Advertisement
Research Article| Volume 74, 104695, June 2023

Early neurofilament light and glial fibrillary acidic protein levels improve predictive models of multiple sclerosis outcomes

  • Author Footnotes
    1 Present address: University of Ottawa and The Ottawa Hospital Research Institute, Department of Medicine, The Ottawa Hospital General Campus, Multiple Sclerosis Clinic, 501 Smyth Road, Box 606, Ottawa, Canada, K1H 8L6
    Gauruv Bose
    Footnotes
    1 Present address: University of Ottawa and The Ottawa Hospital Research Institute, Department of Medicine, The Ottawa Hospital General Campus, Multiple Sclerosis Clinic, 501 Smyth Road, Box 606, Ottawa, Canada, K1H 8L6
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Brian C. Healy
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Shrishti Saxena
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Fermisk Saleh
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Anu Paul
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Christian Barro
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Hrishikesh A. Lokhande
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Mariann Polgar-Turcsanyi
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Mark Anderson
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Bonnie I. Glanz
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Charles R.G. Guttmann
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Rohit Bakshi
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Howard L. Weiner
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Tanuja Chitnis
    Correspondence
    Corresponding author at: Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA.
    Affiliations
    Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA

    Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
    Search for articles by this author
  • Author Footnotes
    1 Present address: University of Ottawa and The Ottawa Hospital Research Institute, Department of Medicine, The Ottawa Hospital General Campus, Multiple Sclerosis Clinic, 501 Smyth Road, Box 606, Ottawa, Canada, K1H 8L6

      Highlights

      • Predictive models for MS may identify patients at risk for worse disease.
      • Outcome prediction modestly improved by adding biomarker data.
      • Worse clinical outcomes were associated with higher sGFAP.
      • Worse MRI outcomes were associated with higher sNfL.
      • 1-year follow-up values further improved prediction of MRI outcomes, not clinical outcomes.

      Abstract

      Background

      Early risk-stratification in multiple sclerosis (MS) may impact treatment decisions. Current predictive models have identified that clinical and imaging characteristics of aggressive disease are associated with worse long-term outcomes. Serum biomarkers, neurofilament (sNfL) and glial fibrillary acidic protein (sGFAP), reflect subclinical disease activity through separate pathological processes and may contribute to predictive models of clinical and MRI outcomes.

      Methods

      We conducted a retrospective analysis of the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital (CLIMB study), where patients with multiple sclerosis are seen every 6 months and undergo Expanded Disability Status Scale (EDSS) assessment, have annual brain MRI scans where volumetric analysis is conducted to calculate T2-lesion volume (T2LV) and brain parenchymal fraction (BPF), and donate a yearly blood sample for subsequent analysis. We included patients with newly diagnosed relapsing-remitting MS and serum samples obtained at baseline visit and 1-year follow-up (both within 3 years of onset), and were assessed at 10-year follow-up. We measured sNfL and sGFAP by single molecule array at baseline visit and at 1-year follow-up. A predictive clinical model was developed using age, sex, Expanded Disability Status Scale (EDSS), pyramidal signs, relapse rate, and spinal cord lesions at first visit. The main outcome was odds of developing of secondary progressive (SP)MS at year 10. Secondary outcomes included 10-year EDSS, brain T2LV and BPF. We compared the goodness-of-fit of the predictive clinical model with and without sNfL and sGFAP at baseline and 1-year follow-up, for each outcome by area under the receiver operating characteristic curve (AUC) or R-squared.

      Results

      A total 144 patients with median MS onset at age 37.4 years (interquartile range: 29.4–45.4), 64% female, were included. SPMS developed in 25 (17.4%) patients. The AUC for the predictive clinical model without biomarker data was 0.73, which improved to 0.77 when both sNfL and sGFAP were included in the model (P = 0.021). In this model, higher baseline sGFAP associated with developing SPMS (OR=3.3 [95%CI:1.1,10.6], P = 0.04). Adding 1-year follow-up biomarker levels further improved the model fit (AUC = 0.79) but this change was not statistically significant (P = 0.15). Adding baseline biomarker data also improved the R-squared of clinical models for 10-year EDSS from 0.24 to 0.28 (P = 0.032), while additional 1-year follow-up levels did not. Baseline sGFAP was associated with 10-year EDSS (ß=0.58 [95%CI:0.00,1.16], P = 0.05). For MRI outcomes, baseline biomarker levels improved R-squared for T2LV from 0.12 to 0.27 (P<0.001), and BPF from 0.15 to 0.20 (P = 0.042). Adding 1-year follow-up biomarker data further improved T2LV to 0.33 (P = 0.0065) and BPF to 0.23 (P = 0.048). Baseline sNfL was associated with T2LV (ß=0.34 [95%CI:0.21,0.48], P<0.001) and 1-year follow-up sNfL with BPF (ß=-2.53% [95%CI:-4.18,-0.89], P = 0.003).

      Conclusions

      Early biomarker levels modestly improve predictive models containing clinical and MRI variables. Worse clinical outcomes, SPMS and EDSS, are associated with higher sGFAP levels and worse MRI outcomes, T2LV and BPF, are associated with higher sNfL levels. Prospective study implementing these predictive models into clinical practice are needed to determine if early biomarker levels meaningfully impact clinical practice.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abdelhak A.
        • Hottenrott T.
        • Morenas-Rodríguez E.
        • Suárez-Calvet M.
        • Zettl U.K.
        • Haass C.
        • Meuth S.G.
        • Rauer S.
        • Otto M.
        • Tumani H.
        • Huss A.
        Glial activation markers in CSF and serum from patients with primary progressive multiple sclerosis: potential of serum GFAP as disease severity marker?.
        Front. Neurol. 2019; 10https://doi.org/10.3389/fneur.2019.00280
        • Abdelhak A.
        • Huss A.
        • Kassubek J.
        • Tumani H.
        • Otto M.
        Serum GFAP as a biomarker for disease severity in multiple sclerosis.
        Sci. Rep. 2018; 8: 1-7https://doi.org/10.1038/s41598-018-33158-8
        • Altmann P.
        • Leutmezer F.
        • Zach H.
        • Wurm R.
        • Stattmann M.
        • Ponleitner M.
        • Petzold A.
        • Zetterberg H.
        • Berger T.
        • Rommer P.
        • Bsteh G.
        Serum neurofilament light chain withstands delayed freezing and repeated thawing.
        Sci. Rep. 2020; 10: 19982https://doi.org/10.1038/s41598-020-77098-8
        • Ayrignac X.
        • Le Bars E.
        • Duflos C.
        • Hirtz C.
        • Maleska Maceski A.
        • Carra-Dallière C.
        • Charif M.
        • Pinna F.
        • Prin P.
        • Menjot de Champfleur N.
        • Deverdun J.
        • Kober T.
        • Marechal B.
        • Fartaria M.J.
        • Corredor Jerez R.
        • Labauge P.
        • Lehmann S.
        Serum GFAP in multiple sclerosis: correlation with disease type and MRI markers of disease severity.
        Sci. Rep. 2020; 10: 10923https://doi.org/10.1038/s41598-020-67934-2
        • Bakshi R.
        • Healy B.C.
        • Dupuy S.L.
        • Kirkish G.
        • Khalid F.
        • Gundel T.
        • Asteggiano C.
        • Yousuf F.
        • Alexander A.
        • Hauser S.L.
        • Weiner H.L.
        • Henry R.G.
        Brain MRI predicts worsening multiple sclerosis disability over 5 years in the SUMMIT study.
        J. Neuroimaging. 2020; 30: 212-218https://doi.org/10.1111/jon.12688
        • Barro C.
        • Benkert P.
        • Disanto G.
        • Tsagkas C.
        • Amann M.
        • Naegelin Y.
        • Leppert D.
        • Gobbi C.
        • Granziera C.
        • Yaldizli Ö.
        • Michalak Z.
        • Wuerfel J.
        • Kappos L.
        • Parmar K.
        • Kuhle J.
        Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis.
        Brain. 2018; 141: 2382-2391https://doi.org/10.1093/brain/awy154
        • Barro C.
        • Healy B.C.
        • Liu Y.
        • Saxena S.
        • Paul A.
        • Polgar-Turcsanyi M.
        • Guttmann C.R.G.
        • Bakshi R.
        • Kropshofer H.
        • Weiner H.L.
        • Chitnis T.
        Serum GFAP and NfL levels differentiate subsequent progression and disease activity in patients with progressive multiple sclerosis.
        Neurol. Neuroimmunol. Neuroinflamm. 2023; 10e200052https://doi.org/10.1212/NXI.0000000000200052
        • Benkert P.
        • Meier S.
        • Schaedelin S.
        • Manouchehrinia A.
        • Yaldizli Ö.
        • Maceski A.
        • Oechtering J.
        • Achtnichts L.
        • Conen D.
        • Derfuss T.
        • Lalive P.H.
        • Mueller C.
        • Müller S.
        • Naegelin Y.
        • Oksenberg J.R.
        • Pot C.
        • Salmen A.
        • Willemse E.
        • Kockum I.
        • Blennow K.
        • Zetterberg H.
        • Gobbi C.
        • Kappos L.
        • Wiendl H.
        • Berger K.
        • Sormani M.P.
        • Granziera C.
        • Piehl F.
        • Leppert D.
        • Kuhle J.
        • Aeschbacher S.
        • Barakovic M.
        • Buser A.
        • Chan A.
        • Disanto G.
        • D'Souza M.
        • Du Pasquier R.
        • Findling O.
        • Galbusera R.
        • Hrusovsky K.
        • Khalil M.
        • Lorscheider J.
        • Mathias A.
        • Orleth A.
        • Radue E.-W.
        • Rahmanzadeh R.
        • Sinnecker T.
        • Subramaniam S.
        • Vehoff J.
        • Wellmann S.
        • Wuerfel J.
        • Zecca C.
        Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study.
        Lancet Neurol. 2022; 21: 246-257https://doi.org/10.1016/S1474-4422(22)00009-6
        • Beydoun M.A.
        • Noren Hooten N.
        • Beydoun H.A.
        • Maldonado A.I.
        • Weiss J.
        • Evans M.K.
        • Zonderman A.B.
        Plasma neurofilament light as a potential biomarker for cognitive decline in a longitudinal study of middle-aged urban adults.
        Transl. Psychiatry. 2021; 11: 436https://doi.org/10.1038/s41398-021-01563-9
        • Bose G.
        • Freedman M.S.
        Precision medicine in the multiple sclerosis clinic: selecting the right patient for the right treatment.
        Mult. Scler. J. 2020; 26: 540-547https://doi.org/10.1177/1352458519887324
        • Bose G.
        • Healy B.C.
        • Lokhande H.A.
        • Sotiropoulos M.G.
        • Polgar-Turcsanyi M.
        • Anderson M.
        • Glanz B.I.
        • Guttman C.R.G.
        • Bakshi R.
        • Weiner H.L.
        • Chitnis T.
        Early predictors of clinical and MRI outcomes using least absolute shrinkage and selection operator (LASSO) in multiple sclerosis.
        Ann. Neurol. 2022; 92: 87-96https://doi.org/10.1002/ana.26370
        • Cantó E.
        • Barro C.
        • Zhao C.
        • Caillier S.J.
        • Michalak Z.
        • Bove R.
        • Tomic D.
        • Santaniello A.
        • Häring D.A.
        • Hollenbach J.
        • Henry R.G.
        • Cree B.A.C.
        • Kappos L.
        • Leppert D.
        • Hauser S.L.
        • Benkert P.
        • Oksenberg J.R.
        • Kuhle J.
        Association between serum neurofilament light chain levels and long-term disease course among patients with multiple sclerosis followed up for 12 years.
        JAMA Neurol. 2019; 76: 1359https://doi.org/10.1001/jamaneurol.2019.2137
        • Chicco D.
        • Warrens M.J.
        • Jurman G.
        The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation.
        PeerJ Comput. Sci. 2021; 7: e623https://doi.org/10.7717/peerj-cs.623
        • Chitnis T.
        • Gonzalez C.
        • Healy B.C.
        • Saxena S.
        • Rosso M.
        • Barro C.
        • Michalak Z.
        • Paul A.
        • Kivisakk P.
        • Diaz-Cruz C.
        • Sattarnezhad N.
        • Pierre I.V.
        • Glanz B.I.
        • Tomic D.
        • Kropshofer H.
        • Häring D.
        • Leppert D.
        • Kappos L.
        • Bakshi R.
        • Weiner H.L.
        • Kuhle J.
        Neurofilament light chain serum levels correlate with 10-year MRI outcomes in multiple sclerosis.
        Ann. Clin. Transl. Neurol. 2018; 5: 1478-1491https://doi.org/10.1002/acn3.638
        • Chitnis T.
        • Prat A.
        A roadmap to precision medicine for multiple sclerosis.
        Mult. Scler. J. 2020; 26: 522-532https://doi.org/10.1177/1352458519881558
        • Cree B.A.C.
        • Arnold D.L.
        • Chataway J.
        • Chitnis T.
        • Fox R.J.
        • Pozo Ramajo A.
        • Murphy N.
        • Lassmann H.
        Secondary progressive multiple sclerosis.
        Neurology. 2021; 97: 378-388https://doi.org/10.1212/WNL.0000000000012323
        • D'Souza M.
        • Yaldizli Ö.
        • John R.
        • Vogt D.R.
        • Papadopoulou A.
        • Lucassen E.
        • Menegola M.
        • Andelova M.
        • Dahlke F.
        • Schnyder F.
        • Kappos L.
        Neurostatus e-scoring improves consistency of expanded disability status scale assessments: a proof of concept study.
        Mult. Scler. J. 2017; 23: 597-603https://doi.org/10.1177/1352458516657439
        • Dekker I.
        • Sombekke M.H.
        • Balk L.J.
        • Moraal B.
        • Geurts J.J.
        • Barkhof F.
        • Uitdehaag B.M.
        • Killestein J.
        • Wattjes M.P.
        Infratentorial and spinal cord lesions: cumulative predictors of long-term disability?.
        Mult. Scler. J. 2020; 26: 1381-1391https://doi.org/10.1177/1352458519864933
        • Delcoigne B.
        • Manouchehrinia A.
        • Barro C.
        • Benkert P.
        • Michalak Z.
        • Kappos L.
        • Leppert D.
        • Tsai J.A.
        • Plavina T.
        • Kieseier B.C.
        • Lycke J.
        • Alfredsson L.
        • Kockum I.
        • Kuhle J.
        • Olsson T.
        • Piehl F.
        Blood neurofilament light levels segregate treatment effects in multiple sclerosis.
        Neurology. 2020; 94: e1201-e1212https://doi.org/10.1212/WNL.0000000000009097
        • Disanto G.
        • Barro C.
        • Benkert P.
        • Naegelin Y.
        • Schädelin S.
        • Giardiello A.
        • Zecca C.
        • Blennow K.
        • Zetterberg H.
        • Leppert D.
        • Kappos L.
        • Gobbi C.
        • Kuhle J.
        Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis.
        Ann. Neurol. 2017; 81: 857-870https://doi.org/10.1002/ana.24954
        • Dolgin E.
        BTK blockers make headway in multiple sclerosis.
        Nat. Biotechnol. 2021; 39: 3-5https://doi.org/10.1038/s41587-020-00790-7
        • Filippi M.
        • Bar-Or A.
        • Piehl F.
        • Preziosa P.
        • Solari A.
        • Vukusic S.
        • Rocca M.A.
        Multiple sclerosis.
        Nat. Rev. Dis. Prim. 2018; 4: 43https://doi.org/10.1038/s41572-018-0041-4
        • Freedman M.S.
        • Selchen D.
        • Prat A.
        • Giacomini P.S.
        Managing multiple sclerosis: treatment initiation, modification, and sequencing.
        Can. J. Neurol. Sci. /J. Can. Des. Sci. Neurol. 2018; 45: 489-503https://doi.org/10.1017/cjn.2018.17
        • Gasperini C.
        • Prosperini L.
        • Rovira À.
        • Tintoré M.
        • Sastre-Garriga J.
        • Tortorella C.
        • Haggiag S.
        • Galgani S.
        • Capra R.
        • Pozzilli C.
        • Montalban X.
        • Río J.
        Scoring the 10-year risk of ambulatory disability in multiple sclerosis: the RoAD score.
        Eur. J. Neurol. 2021; 28: 2533-2542https://doi.org/10.1111/ene.14845
        • Gauthier S.A.
        • Glanz B.I.
        • Mandel M.
        • Weiner H.L.
        A model for the comprehensive investigation of a chronic autoimmune disease: the multiple sclerosis CLIMB study.
        Autoimmun. Rev. 2006; 5: 532-536https://doi.org/10.1016/j.autrev.2006.02.012
        • Gholipour T.
        • Healy B.
        • Baruch N.F.
        • Weiner H.L.
        • Chitnis T.
        Demographic and clinical characteristics of malignant multiple sclerosis.
        Neurology. 2011; 76: 1996-2001https://doi.org/10.1212/WNL.0b013e31821e559d
        • Healy B.C.
        • Buckle G.J.
        • Ali E.N.
        • Egorova S.
        • Khalid F.
        • Tauhid S.
        • Glanz B.I.
        • Chitnis T.
        • Guttmann C.R.G.
        • Weiner H.L.
        • Bakshi R.
        Characterizing clinical and MRI dissociation in patients with multiple sclerosis.
        J. Neuroimaging. 2017; 27: 481-485https://doi.org/10.1111/jon.12433
        • Högel H.
        • Rissanen E.
        • Barro C.
        • Matilainen M.
        • Nylund M.
        • Kuhle J.
        • Airas L.
        Serum glial fibrillary acidic protein correlates with multiple sclerosis disease severity.
        Mult. Scler. J. 2020; 26: 210-219https://doi.org/10.1177/1352458518819380
        • Hutchens M.J.
        Nested model comparison.
        The International Encyclopedia of Communication Research Methods. Wiley, 2017: 1-2https://doi.org/10.1002/9781118901731.iecrm0166
        • Janardhan V.
        • Bakshi R.
        Quality of life and its relationship to brain lesions and atrophy on magnetic resonance images in 60 patients with multiple sclerosis.
        Arch. Neurol. 2000; 57https://doi.org/10.1001/archneur.57.10.1485
        • Jokubaitis V.G.
        • Spelman T.
        • Kalincik T.
        • Lorscheider J.
        • Havrdova E.
        • Horakova D.
        • Duquette P.
        • Girard M.
        • Prat A.
        • Izquierdo G.
        • Grammond P.
        • Van Pesch V.
        • Pucci E.
        • Grand'Maison F.
        • Hupperts R.
        • Granella F.
        • Sola P.
        • Bergamaschi R.
        • Iuliano G.
        • Spitaleri D.
        • Boz C.
        • Hodgkinson S.
        • Olascoaga J.
        • Verheul F.
        • McCombe P.
        • Petersen T.
        • Rozsa C.
        • Lechner-Scott J.
        • Saladino M.L.
        • Farina D.
        • Iaffaldano P.
        • Paolicelli D.
        • Butzkueven H.
        • Lugaresi A.
        • Trojano M.
        Predictors of long-term disability accrual in relapse-onset multiple sclerosis.
        Ann. Neurol. 2016; 80: 89-100https://doi.org/10.1002/ana.24682
        • Kassubek R.
        • Gorges M.
        • Schocke M.
        • Hagenston V.A.M.
        • Huss A.
        • Ludolph A.C.
        • Kassubek J.
        • Tumani H.
        GFAP in early multiple sclerosis: a biomarker for inflammation.
        Neurosci. Lett. 2017; 657: 166-170https://doi.org/10.1016/j.neulet.2017.07.050
        • Khalil M.
        • Pirpamer L.
        • Hofer E.
        • Voortman M.M.
        • Barro C.
        • Leppert D.
        • Benkert P.
        • Ropele S.
        • Enzinger C.
        • Fazekas F.
        • Schmidt R.
        • Kuhle J.
        Serum neurofilament light levels in normal aging and their association with morphologic brain changes.
        Nat. Commun. 2020; 11: 812https://doi.org/10.1038/s41467-020-14612-6
        • Kuhle J.
        • Barro C.
        • Andreasson U.
        • Derfuss T.
        • Lindberg R.
        • Sandelius Å.
        • Liman V.
        • Norgren N.
        • Blennow K.
        • Zetterberg H.
        Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa.
        Clin. Chem. Lab. Med. 2016; 54: 1655-1661https://doi.org/10.1515/cclm-2015-1195
        • Kurtzke J.F.
        Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
        Neurology. 1983; 33: 1444-1452
        • Lokhande H.
        • Rosso M.
        • Tauhid S.
        • Chu R.
        • Healy B.C.
        • Saxena S.
        • Barro C.
        • Paul A.
        • Polgar-Turcsanyi M.
        • Anderson M.
        • Glanz B.I.
        • Kropshofer H.
        • Granziera C.
        • Leppert D.
        • Kappos L.
        • Kuhle J.
        • Weiner H.L.
        • Bakshi R.
        • Chitnis T.
        Serum NfL levels in the first five years predict 10-year thalamic fraction in patients with MS.
        Mult. Scler. J. Exp. Transl. Clin. 2022; 8 (205521732110693)https://doi.org/10.1177/20552173211069348
        • Lorscheider J.
        • Buzzard K.
        • Jokubaitis V.
        • Spelman T.
        • Havrdova E.
        • Horakova D.
        • Trojano M.
        • Izquierdo G.
        • Girard M.
        • Duquette P.
        • Prat A.
        • Lugaresi A.
        • Grand'Maison F.
        • Grammond P.
        • Hupperts R.
        • Alroughani R.
        • Sola P.
        • Boz C.
        • Pucci E.
        • Lechner-Scott J.
        • Bergamaschi R.
        • Oreja-Guevara C.
        • Iuliano G.
        • Van Pesch V.
        • Granella F.
        • Ramo-Tello C.
        • Spitaleri D.
        • Petersen T.
        • Slee M.
        • Verheul F.
        • Ampapa R.
        • Amato M.P.
        • McCombe P.
        • Vucic S.
        • Sánchez Menoyo J.L.
        • Cristiano E.
        • Barnett M.H.
        • Hodgkinson S.
        • Olascoaga J.
        • Saladino M.L.
        • Gray O.
        • Shaw C.
        • Moore F.
        • Butzkueven H.
        • Kalincik T.
        Defining secondary progressive multiple sclerosis.
        Brain. 2016; 139: 2395-2405https://doi.org/10.1093/brain/aww173
        • Malpas C.B.
        • Manouchehrinia A.
        • Sharmin S.
        • Roos I.
        • Horakova D.
        • Havrdova E.K.
        • Trojano M.
        • Izquierdo G.
        • Eichau S.
        • Bergamaschi R.
        • Sola P.
        • Ferraro D.
        • Lugaresi A.
        • Prat A.
        • Girard M.
        • Duquette P.
        • Grammond P.
        • Grand'Maison F.
        • Ozakbas S.
        • Van Pesch V.
        • Granella F.
        • Hupperts R.
        • Pucci E.
        • Boz C.
        • Sidhom Y.
        • Gouider R.
        • Spitaleri D.
        • Soysal A.
        • Petersen T.
        • Verheul F.
        • Karabudak R.
        • Turkoglu R.
        • Ramo-Tello C.
        • Terzi M.
        • Cristiano E.
        • Slee M.
        • McCombe P.
        • Macdonell R.
        • Fragoso Y.
        • Olascoaga J.
        • Altintas A.
        • Olsson T.
        • Butzkueven H.
        • Hillert J.
        • Kalincik T.
        Early clinical markers of aggressive multiple sclerosis.
        Brain. 2020; 143: 1400-1413https://doi.org/10.1093/brain/awaa081
        • Meier D.S.
        • Guttmann C.R.G.
        • Tummala S.
        • Moscufo N.
        • Cavallari M.
        • Tauhid S.
        • Bakshi R.
        • Weiner H.L.
        Dual-sensitivity multiple sclerosis lesion and CSF segmentation for multichannel 3T brain MRI.
        J. Neuroimaging. 2018; 28: 36-47https://doi.org/10.1111/jon.12491
        • Novakova L.
        • Zetterberg H.
        • Sundström P.
        • Axelsson M.
        • Khademi M.
        • Gunnarsson M.
        • Malmeström C.
        • Svenningsson A.
        • Olsson T.
        • Piehl F.
        • Blennow K.
        • Lycke J.
        Monitoring disease activity in multiple sclerosis using serum neurofilament light protein.
        Neurology. 2017; 89: 2230-2237https://doi.org/10.1212/WNL.0000000000004683
        • Pauwels A.
        • Van Schependom J.
        • Devolder L.
        • Van Remoortel A.
        • Nagels G.
        • Bjerke M.
        • D'hooghe M.B.
        Plasma glial fibrillary acidic protein and neurofilament light chain in relation to disability worsening in multiple sclerosis.
        Mult. Scler. J. 2022; (135245852210942)https://doi.org/10.1177/13524585221094224
        • Pisani A.I.
        • Scalfari A.
        • Crescenzo F.
        • Romualdi C.
        • Calabrese M.
        A novel prognostic score to assess the risk of progression in relapsing−remitting multiple sclerosis patients.
        Eur. J. Neurol. 2021; 14859 (ene.)https://doi.org/10.1111/ene.14859
        • Prion S.
        • Haerling K.A.
        Making sense of methods and measurement: spearman-Rho ranked-order correlation coefficient.
        Clin. Simul. Nurs. 2014; 10: 535-536https://doi.org/10.1016/j.ecns.2014.07.005
        • Ribbons K.A.
        • McElduff P.
        • Boz C.
        • Trojano M.
        • Izquierdo G.
        • Duquette P.
        • Girard M.
        • Grand'Maison F.
        • Hupperts R.
        • Grammond P.
        • Oreja-Guevara C.
        • Petersen T.
        • Bergamaschi R.
        • Giuliani G.
        • Barnett M.
        • van Pesch V.
        • Amato M.-P.
        • Iuliano G.
        • Fiol M.
        • Slee M.
        • Verheul F.
        • Cristiano E.
        • Fernandez-Bolanos R.
        • Saladino M.-L.
        • Rio M.E.
        • Cabrera-Gomez J.
        • Butzkueven H.
        • van Munster E.
        • Den Braber-Moerland L.
        • La Spitaleri D.
        • Lugaresi A.
        • Shaygannejad V.
        • Gray O.
        • Deri N.
        • Alroughani R.
        • Lechner-Scott J.
        Male sex is independently associated with faster disability accumulation in relapse-onset MS but not in primary progressive MS.
        PLoS ONE. 2015; 10e0122686https://doi.org/10.1371/journal.pone.0122686
        • Rosso M.
        • Gonzalez C.T.
        • Healy B.C.
        • Saxena S.
        • Paul A.
        • Bjornevik K.
        • Kuhle J.
        • Benkert P.
        • Leppert D.
        • Guttmann C.
        • Bakshi R.
        • Weiner H.L.
        • Chitnis T.
        Temporal association of sNfL and gad-enhancing lesions in multiple sclerosis.
        Ann. Clin. Transl. Neurol. 2020; 7: 945-955https://doi.org/10.1002/acn3.51060
        • Rush C.A.
        • MacLean H.J.
        • Freedman M.S.
        Aggressive multiple sclerosis: proposed definition and treatment algorithm.
        Nat. Rev. Neurol. 2015; 11: 379-389https://doi.org/10.1038/nrneurol.2015.85
        • Spelman T.
        • Forsberg L.
        • McKay K.
        • Glaser A.
        • Hillert J.
        Increased rate of hospitalisation for COVID-19 among rituximab-treated multiple sclerosis patients: a study of the Swedish multiple sclerosis registry.
        Mult. Scler. J. 2021; (135245852110262)https://doi.org/10.1177/13524585211026272
        • Stankiewicz J.M.
        • Glanz B.I.
        • Healy B.C.
        • Arora A.
        • Neema M.
        • Benedict R.H.B.
        • Guss Z.D.
        • Tauhid S.
        • Buckle G.J.
        • Houtchens M.K.
        • Khoury S.J.
        • Weiner H.L.
        • Guttmann C.R.G.
        • Bakshi R.
        Brain MRI lesion load at 1.5T and 3T versus clinical status in multiple sclerosis.
        J. Neuroimaging. 2011; 21: e50-e56https://doi.org/10.1111/j.1552-6569.2009.00449.x
        • Thebault S.
        • Abdoli M.
        • Fereshtehnejad S.-M.
        • Tessier D.
        • Tabard-Cossa V.
        • Freedman M.S.
        Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis.
        Sci. Rep. 2020; 10: 10381https://doi.org/10.1038/s41598-020-67504-6
        • Thebault S.
        • Bose G.
        • Booth R.
        • Freedman M.S.
        Serum neurofilament light in MS: the first true blood-based biomarker?.
        Mult. Scler. J. 2021; (135245852199306)https://doi.org/10.1177/1352458521993066
        • Thebault S.
        • Reaume M.
        • Marrie R.A.
        • Marriott J.J.
        • Furlan R.
        • Laroni A.
        • Booth R.A.
        • Uccelli A.
        • Freedman M.S.
        High or increasing serum NfL is predictive of impending multiple sclerosis relapses.
        Mult. Scler. Relat. Disord. 2022; 59103535https://doi.org/10.1016/j.msard.2022.103535
        • Thompson A.J.
        • Banwell B.L.
        • Barkhof F.
        • Carroll W.M.
        • Coetzee T.
        • Comi G.
        • Correale J.
        • Fazekas F.
        • Filippi M.
        • Freedman M.S.
        • Fujihara K.
        • Galetta S.L.
        • Hartung H.P.
        • Kappos L.
        • Lublin F.D.
        • Marrie R.A.
        • Miller A.E.
        • Miller D.H.
        • Montalban X.
        • Mowry E.M.
        • Sorensen P.S.
        • Tintoré M.
        • Traboulsee A.L.
        • Trojano M.
        • Uitdehaag B.M.J.
        • Vukusic S.
        • Waubant E.
        • Weinshenker B.G.
        • Reingold S.C.
        • Cohen J.A.
        Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.
        Lancet Neurol. 2018; 17: 162-173https://doi.org/10.1016/S1474-4422(17)30470-2
        • Valcarcel A.M.
        • Linn K.A.
        • Khalid F.
        • Vandekar S.N.
        • Tauhid S.
        • Satterthwaite T.D.
        • Muschelli J.
        • Martin M.L.
        • Bakshi R.
        • Shinohara R.T.
        A dual modeling approach to automatic segmentation of cerebral T2 hyperintensities and T1 black holes in multiple sclerosis.
        NeuroImage Clin. 2018; 20: 1211-1221https://doi.org/10.1016/j.nicl.2018.10.013
        • Vollmer T.
        • Huynh L.
        • Kelley C.
        • Galebach P.
        • Signorovitch J.
        • DiBernardo A.
        • Sasane R.
        Relationship between brain volume loss and cognitive outcomes among patients with multiple sclerosis: a systematic literature review.
        Neurol. Sci. 2016; 37: 165-179https://doi.org/10.1007/s10072-015-2400-1
        • Wilson D.H.
        • Rissin D.M.
        • Kan C.W.
        • Fournier D.R.
        • Piech T.
        • Campbell T.G.
        • Meyer R.E.
        • Fishburn M.W.
        • Cabrera C.
        • Patel P.P.
        • Frew E.
        • Chen Y.
        • Chang L.
        • Ferrell E.P.
        • von Einem V.
        • McGuigan W.
        • Reinhardt M.
        • Sayer H.
        • Vielsack C.
        • Duffy D.C.
        The Simoa HD-1 analyzer.
        J. Lab. Autom. 2016; 21: 533-547https://doi.org/10.1177/2211068215589580

      Biography

      Gauruv Bose has received an endMS PostDoctoral Fellowship award from the Multiple Sclerosis Society of Canada.

      Biography

      Brian C. Healy has received research support from Analysis Group, Celgene (Bristol-Myers Squibb), Verily Life Sciences, Merck-Serono, Novartis and Genzyme.

      Biography

      Shrishti Saxena reports no disclosures.

      Biography

      Fermisk Saleh reports no disclosures.

      Biography

      Anu Paul reports no disclosures.

      Biography

      Christian Barro has received a PostDoctoral Fellowship award from the Swiss National Science Foundation.

      Biography

      Hrishikesh A. Lokhande has received research support from Verily Life Sciences, Octave Bioscience, and the Department of Defense.

      Biography

      Mariann Polgar-Turcsanyi reports no disclosures.

      Biography

      Mark Anderson reports no disclosures.

      Biography

      Bonnie I. Glanz has received grant support from Merck Serono and Verily Life Sciences.

      Biography

      Charles R.G. Guttmann has received research funding from Sanofi, the National Multiple Sclerosis Society, the International Progressive Multiple Sclerosis Alliance, the National Institutes of Health, the U.S. Office for Naval Research, the Bright Focus Foundation, as well as travel support from Roche Pharmaceuticals; C.R.G.G. owns stock in Roche, Novartis, GSK, Alnylam, Protalix Biotherapeutics, Arrowhead Pharmaceuticals, Cocrystal Pharma, Sangamo Therapeutics, Alcon.

      Biography

      Rohit Bakshi has received consulting fees from Bristol-Myers Squibb and EMD Serono and research support from Bristol-Myers Squibb, EMD Serono, Novartis, the US Department of Defense, the National Institutes of Health, and the National Multiple Sclerosis Society.

      Biography

      Howard L. Weiner has received research support from Cure Alzheimer's Fund, EMD Serono, Inc., Genentech, Inc., National Institutes of Health, National Multiple Sclerosis Society, Sanofi Genzyme, and Verily Life Sciences. He has received payment for consulting from Genentech, Inc, MedDay Pharmaceuticals, Tiziana Life Sciences and vTv Therapeutics.

      Biography

      Tanuja Chitnis has received compensation for consulting from Biogen, Novartis Pharmaceuticals, Roche Genentech, and Sanofi Genzyme. She has received research support from the National Institutes of Health, National MS Society, US Department of Defense, EMD Serono, I-Mab Biopharma, Mallinckrodt ARD, Novartis Pharmaceuticals, Octave Bioscience, Roche Genentech, and Tiziana Life Sciences.