Highlights
- •Smartphone applications are valid and reliable in assessing cognition in pwMS.
- •Smartphone versions of the symbol digit modalities test are most used.
- •Short and long-term practice effects are present.
- •Longitudinal data, predictive and ecological validity are lacking.
Abstract
Background
Methods
Results
Conclusion
Keywords
Abbreviations:
9HPT (9-hole peg test), BICAMS (brief international cognitive assessment for MS), BV (brain volume), BVMT-R (brief visuospatial memory test-revised), CCC (Lin's Concordance correlation coefficient), CI (cognitively impaired), CVLT (California verbal learning test), EDSS (expanded disability status scale), FLAIR (fluid attenuated inversion recovery), HC (healthy controls), HCP (healthcare professionals), ICC (intra-class correlation), MCID (minimum clinically important difference), MSFC (MS functional composite), MSIS-29 (MS impact scale), pwMS (people with MS), pwMSwoCI (people with MS without cognitive impairment), SDC (smallest detectable change), SDMT (symbol digit modalities test), T2LV (T2 lesion volume)1. Introduction
2. Methods
2.1 Search protocol and inclusion criteria
- Cumpston M.
- Li T.
- Page M.J.
- Chandler J.
- Welch V.A.
- Higgins J.P.
- Thomas J.
2.2 Data extraction and quality assessment
- •Pearson's r or Spearman's rho correlation coefficients (Mukaka, 2012): Strong was defined as >0.7 (coloured green), moderate between >0.4 and 0.7 (coloured yellow), and weak between >0.1 and 0.4 (coloured red).
- •Intraclass correlation coefficient (ICC) or Lin's Concordance correlation coefficient (CCC) (Fleiss et al., 2013): Excellent was defined as >0.9 (coloured green), good as >0.75–0.9 (coloured yellow) and weak as </= 0.75 (coloured red).
- •Area under the receiver operating characteristic (AUC) (Rice and Harris, 2005): Acceptable was defined as >/= 0.7 (coloured green) and poor as <0.7 (coloured red).
- •T-tests or Wilcoxon's signed-rank tests (Fleiss et al., 2013): Acceptable was defined as p-values <0.05 (coloured green) and poor as values >/=0.05 (coloured red).
National Institute of Health, 2014. Quality assessment tool for observational cohort and cross-sectional studies [Internet]. Available from: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools.
3. Results
3.1 Study selection

3.2 Study analysis
App studied | Refs. | Participant characteristics | Smartphone model | Study design | Number of pwMS |
---|---|---|---|---|---|
Floodlight | Montalban et al., 2021 | -Mean (±SD) EDSS: 2.4 ± 1.4 -Mean (±SD) Age: 39.5 ± 7.9 -Female%: 53% -Mean time since onset (±SD): 11.3 ± 7 -Type of MS: all | Samsung Galaxy S7 | Prospective cohort | 76 |
Midaglia et al., 2019
Adherence and satisfaction of smartphone- and smartwatch-based remote active testing and passive monitoring in people with multiple sclerosis: nonrandomized interventional feasibility study. J. Med. Internet Res. 2019; 21: e14863 | |||||
Woelfle et al., 2021 | -Mean (±SD) EDSS: unknown -Median (IQR) Age: 50.2 (42.0–58.0) -Female%: 70.2% -Mean time since onset (±SD): unknown -Type of MS: unknown | Participant's smartphone | Prospective cohort | 262 | |
MSSherpa | Lam et al., 2022c c | -Median (Range) EDSS: 3.5 (1.5–7) -Mean (±SD) Age: 46.9 ± 10.1 -Female%: 73.9% -Median time since onset (IQR): 10.9 (5.3–18.3) -Type of MS: all | Participant's smartphone | Cross-sectional | 92 |
Lam et al., 2022a | -Median (IQR) EDSS: 3.5 (2.5–6) -Mean (±SD) Age: 46.5 ± 10.3 -Female%: 74% -Median time since onset (IQR): 5.7 (3.1–27.1) -Type of MS: all | Participant's smartphone | Prospective cohort | 100 | |
van Oirschot et al., 2020 | -Mean (±SD) EDSS: 3.1 (1.4) -Mean (±SD) Age: 40 ± 8 -Female%: 92% -Mean time since onset (±SD): 6 ± 4.4 -Type of MS: RRMS | Participant's smartphone | Cross-sectional | 25 | |
MSCopilot | Maillart et al., 2020
MSCopilot, a new multiple sclerosis self-assessment digital solution: results of a comparative study versus standard tests. Eur. J. Neurol. 2020; 27: 429-436 | -Mean (±SD) EDSS: 3.6 (1.6) -Mean (±SD) Age: 46 ± 10 -Female%: 61.2% -Mean time since onset (±SD): 12 ± 7 -Type of MS: RRMS | Not specified | Cross-sectional | 116 |
Tanoh et al., 2021
MSCopilot: new smartphone-based digital biomarkers correlate with expanded disability status scale scores in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2021; 55103164 | |||||
Neurokeys | Lam et al., 2022b | -Median (IQR) EDSS: 3.5 (2.5–4.0) -Mean (±SD) Age: 46.7 ± 10.4 -Female%: 72.3% -Median time since diagnosis (IQR): 6.0 (3.0–12.4) -Type of MS: all | Participant's smartphone | Prospective cohort | 94 |
Lam et al., 2020 | -Median (IQR) EDSS: 3.5 (2.5–4.0) -Mean (±SD) Age: 46.4 ± 10.1 -Female%: 75.3% -Median time since onset (IQR): 11.3 (5.1–17.7) -Type of MS: all | Participant's smartphone | Cross-sectional | 85 | |
elevateMS | Pratap et al., 2020
Evaluating the utility of smartphone-based sensor assessments in persons with multiple sclerosis in the real-world using an App (elevateMS): observational, prospective pilot digital health study. JMIR Mhealth Uhealth. 2020; 8: e22108 | -Mean (±SD) EDSS: NA -Mean (±SD) Age: 46.2 ± 11.6 -Female%: 76.8% -Mean time since onset (±SD): 12.0 ± 9.0 -Type of MS: all | Participant's smartphone (iPhone 5 or newer) | Prospective cohort | 495 |
Neufun | Pham et al., 2021 | -Mean (Range) EDSS (for subset of 112 pwMS): 4.9 (0–7) -Mean (Range) Age: 54.3 (18.5 - 77.2) -Female%: 58% -Mean time since onset (±SD): NA -Type of MS: all | Google Pixel XL/2XL phones running Android 9 and above | Cross-sectional (154 pwMS) & longitudinal (15 pwMS) | 154 |
3.3 Psychometric properties of smartphone applications
3.3.1 Smartphone SDMTs
- Maillart E.
- Labauge P.
- Cohen M.
- Maarouf A.
- Vukusic S.
- Donzé C.
- Gallien P.
- De Sèze J.
- Bourre B.
- Moreau T.
- Louapre C.
- Mayran P.
- Bieuvelet S.
- Vallée M.
- Bertillot F.
- Klaeylé L.
- Argoud A.L.
- Zinaï S.
- Tourbah A.
- Tanoh I.C.
- Maillart E.
- Labauge P.
- Cohen M.
- Maarouf A.
- Vukusic S.
- Donzé C.
- Gallien P.
- De Sèze J.
- Bourre B.
- Moreau T.
- Louapre C.
- Vallée M.
- Bieuvelet S.
- Klaeylé L.
- Argoud A.L.
- Zinaï S.
- Tourbah A.
- Maillart E.
- Labauge P.
- Cohen M.
- Maarouf A.
- Vukusic S.
- Donzé C.
- Gallien P.
- De Sèze J.
- Bourre B.
- Moreau T.
- Louapre C.
- Mayran P.
- Bieuvelet S.
- Vallée M.
- Bertillot F.
- Klaeylé L.
- Argoud A.L.
- Zinaï S.
- Tourbah A.
- Tanoh I.C.
- Maillart E.
- Labauge P.
- Cohen M.
- Maarouf A.
- Vukusic S.
- Donzé C.
- Gallien P.
- De Sèze J.
- Bourre B.
- Moreau T.
- Louapre C.
- Vallée M.
- Bieuvelet S.
- Klaeylé L.
- Argoud A.L.
- Zinaï S.
- Tourbah A.
- Maillart E.
- Labauge P.
- Cohen M.
- Maarouf A.
- Vukusic S.
- Donzé C.
- Gallien P.
- De Sèze J.
- Bourre B.
- Moreau T.
- Louapre C.
- Mayran P.
- Bieuvelet S.
- Vallée M.
- Bertillot F.
- Klaeylé L.
- Argoud A.L.
- Zinaï S.
- Tourbah A.
- Tanoh I.C.
- Maillart E.
- Labauge P.
- Cohen M.
- Maarouf A.
- Vukusic S.
- Donzé C.
- Gallien P.
- De Sèze J.
- Bourre B.
- Moreau T.
- Louapre C.
- Vallée M.
- Bieuvelet S.
- Klaeylé L.
- Argoud A.L.
- Zinaï S.
- Tourbah A.
- Maillart E.
- Labauge P.
- Cohen M.
- Maarouf A.
- Vukusic S.
- Donzé C.
- Gallien P.
- De Sèze J.
- Bourre B.
- Moreau T.
- Louapre C.
- Mayran P.
- Bieuvelet S.
- Vallée M.
- Bertillot F.
- Klaeylé L.
- Argoud A.L.
- Zinaï S.
- Tourbah A.
- Midaglia L.
- Mulero P.
- Montalban X.
- Graves J.
- Hauser S.L.
- Julian L.
- Baker M.
- Schadrack J.
- Gossens C.
- Scotland A.
- Lipsmeier F.
- van Beek J.
- Bernasconi C.
- Belachew S.
- Lindemann M.
- Pratap A.
- Grant D.
- Vegesna A.
- Tummalacherla M.
- Cohan S.
- Deshpande C.
- Mangravite L.
- Omberg L.
3.3.2 Passive keystroke monitoring
Smartphone app | Concurrent validity with established cognitive tests | Concurrent validity with clinical composite measures | Other forms of concurrent validity | Discriminant/predictive validity * | Test-retest reliability |
---|---|---|---|---|---|
Floodlight | Strong with SDMT ( Montalban et al., 2021 ) | Moderate with EDSS ( Montalban et al., 2021 ) | Moderate with T2/FLAIR LV and BV Moderate with MSIS-29 ( Montalban et al., 2021 ) | ICC 0.85 ( Montalban et al., 2021 ) | |
MSSherpa | Moderate with CVLT, BVMT-R, SDMT ( Lam et al., 2022c c) | Moderate with EDSS ( Lam et al., 2022c c) | - pwMS & HC - CIpwMS & pwMSwoCI ( Lam et al., 2022c c) | ICC 0.875 to 0.934 ( Lam et al., 2022c c | |
- 3 month SDMT change - 12 month BICAMS change ( Lam et al., 2022a ) | ICC 0.9 ( Lam et al., 2022a ) | ||||
Strong with SDMT ( van Oirschot et al., 2020 ) | - pwMS & matched HC ( van Oirschot et al., 2020 ) | ICC 0.874 ( van Oirschot et al., 2020 ) | |||
MSCopilot | Strong with MSFC as part of MSCopilot ( Maillart et al., 2020 )
MSCopilot, a new multiple sclerosis self-assessment digital solution: results of a comparative study versus standard tests. Eur. J. Neurol. 2020; 27: 429-436 | - pwMS & HC (as part of MSCopilot) ( Maillart et al., 2020 )
MSCopilot, a new multiple sclerosis self-assessment digital solution: results of a comparative study versus standard tests. Eur. J. Neurol. 2020; 27: 429-436 | ICC 0.90 ( Maillart et al., 2020 )
MSCopilot, a new multiple sclerosis self-assessment digital solution: results of a comparative study versus standard tests. Eur. J. Neurol. 2020; 27: 429-436 | ||
Moderate with EDSS as part of MSCopilot ( Tanoh et al., 2021 )
MSCopilot: new smartphone-based digital biomarkers correlate with expanded disability status scale scores in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2021; 55103164 | - pwMS with EDSS </=3.5 & pwMS with EDSS >3.5 ( Tanoh et al., 2021 )
MSCopilot: new smartphone-based digital biomarkers correlate with expanded disability status scale scores in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2021; 55103164 | ||||
Neufun | Good with SDMT ( Pham et al., 2021 ) | Weak to moderate with NeurEx features ( Pham et al., 2021 ) | Moderate with BV and T2LV Moderate with tapping score ( Pham et al., 2021 ) | -pwMS & HC ( Pham et al., 2021 ) | ICC 0.87-0.9 ( Pham et al., 2021 ) |
Neurokeys | - change in SDMT over 3 months ( Lam et al., 2022a ) | ||||
Moderate with SDMT ( Lam et al., 2020 ) | Moderate with EDSS ( Lam et al., 2020 ) | Moderate with 9HPT ( Lam et al., 2020 ) | -pwMS & HC ( Lam et al., 2020 ) | ICC = 0.601 to 0.965 ( Lam et al., 2020 ) | |
Elevate MS | -pwMS with moderate disability & other pwMS -pwMS with gait impairment & other pwMS - pwMS with severe CI & other pwMS ( Pratap et al., 2020 )
Evaluating the utility of smartphone-based sensor assessments in persons with multiple sclerosis in the real-world using an App (elevateMS): observational, prospective pilot digital health study. JMIR Mhealth Uhealth. 2020; 8: e22108 |
3.3.3 Practice effects
3.3.4 Feasibility
- Midaglia L.
- Mulero P.
- Montalban X.
- Graves J.
- Hauser S.L.
- Julian L.
- Baker M.
- Schadrack J.
- Gossens C.
- Scotland A.
- Lipsmeier F.
- van Beek J.
- Bernasconi C.
- Belachew S.
- Lindemann M.
- Pratap A.
- Grant D.
- Vegesna A.
- Tummalacherla M.
- Cohan S.
- Deshpande C.
- Mangravite L.
- Omberg L.
- Maillart E.
- Labauge P.
- Cohen M.
- Maarouf A.
- Vukusic S.
- Donzé C.
- Gallien P.
- De Sèze J.
- Bourre B.
- Moreau T.
- Louapre C.
- Mayran P.
- Bieuvelet S.
- Vallée M.
- Bertillot F.
- Klaeylé L.
- Argoud A.L.
- Zinaï S.
- Tourbah A.
3.3.5 Quality of studies
4. Discussion
- Tanoh I.C.
- Maillart E.
- Labauge P.
- Cohen M.
- Maarouf A.
- Vukusic S.
- Donzé C.
- Gallien P.
- De Sèze J.
- Bourre B.
- Moreau T.
- Louapre C.
- Vallée M.
- Bieuvelet S.
- Klaeylé L.
- Argoud A.L.
- Zinaï S.
- Tourbah A.
- Kappos L.
- Butzkueven H.
- Wiendl H.
- Spelman T.
- Pellegrini F.
- Chen Y.
- Dong Q.
- Koendgen H.
- Belachew S.
- Trojano M.
5. Conclusion
Funding
Declaration of Competing Interest
Appendix. Supplementary materials
References
- Effectiveness of physical therapy interventions in reducing fear of falling among individuals with neurologic diseases: a systematic review and meta-analysis.Arch. Phys. Med. Rehabil. 2021; 102: 132-154
- Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues.Lancet Neurol. 2020; 19: 860-871
- The potential impact of digital biomarkers in multiple sclerosis in The Netherlands: an early health technology assessment of MS sherpa.Brain Sci. 2021; 11: 1305https://doi.org/10.3390/brainsci11101305
- Digital biomarkers can highlight subtle clinical differences in radiologically isolated syndrome compared to healthy controls.J. Neurol. 2021; 268: 1316-1322
- Updated guidance for trusted systematic reviews: a new edition of the cochrane handbook for systematic reviews of interventions.Cochrane Database Syst. Rev. 2019; 10https://doi.org/10.1002/14651858.ED000142
- Relationships between information processing, depression, fatigue and cognition in multiple sclerosis.Arch. Clin. Neuropsychol. 2008; 23: 189-199
- Statistical Methods for Rates and Proportions.John Wiley & Sons, 2013
- Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) and performance of everyday life tasks: actual reality.Mult. Scler. J. 2015; 22: 544-550
National Institute of Health, 2014. Quality assessment tool for observational cohort and cross-sectional studies [Internet]. Available from: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools.
- Effects of diminished positive mood and depressed mood upon verbal learning and memory among people with multiple sclerosis.J. Clin. Exp. Neuropsychol. 2021; 43: 117-128
- Perceived fatigue and cognitive performance change in multiple sclerosis: uncovering predictors beyond baseline fatigue.Mult. Scler. Relat. Disord. 2019; 32: 46-53
- Recommendations for cognitive screening and management in multiple sclerosis care.Mult. Scler. J. 2018; 24: 1665-1680
- Greater sensitivity to multiple sclerosis disability worsening and progression events using a roving versus a fixed reference value in a prospective cohort study.Mult. Scler. 2018; 24: 963-973
- Towards individualized monitoring of cognition in multiple sclerosis in the digital era: a one-year cohort study.Mult. Scler. Relat. Disord. 2022; 60103692
- Smartphone-derived keystroke dynamics are sensitive to relevant changes in multiple sclerosis.Eur. J. Neurol. 2022; 29: 522-534
- Real-world keystroke dynamics are a potentially valid biomarker for clinical disability in multiple sclerosis.Mult. Scler. J. 2020; 27: 1421-1431
- Reliability, construct and concurrent validity of a smartphone-based cognition test in multiple sclerosis.Mult. Scler. J. 2022; 28: 300-308
- ‘Hidden'factors influencing quality of life in patients with multiple sclerosis.Eur. J. Neurol. 2015; 22: 28-33
- MSCopilot, a new multiple sclerosis self-assessment digital solution: results of a comparative study versus standard tests.Eur. J. Neurol. 2020; 27: 429-436
- The feasibility, reliability and concurrent validity of the MSReactor computerized cognitive screening tool in multiple sclerosis.Ther. Adv. Neurol. Disord. 2019; 12 (1756286419859183)
- Association between cognitive trajectories and disability progression in patients with relapsing-remitting multiple sclerosis.Neurology. 2021; 97: e2020-e2031
- Adherence and satisfaction of smartphone- and smartwatch-based remote active testing and passive monitoring in people with multiple sclerosis: nonrandomized interventional feasibility study.J. Med. Internet Res. 2019; 21: e14863
- Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.Ann. Intern. Med. 2009; 151: 264-269
- A smartphone sensor-based digital outcome assessment of multiple sclerosis.Mult. Scler. 2021; 28: 654-664
- Subjective fatigue is not associated with cognitive impairment in multiple sclerosis: cross-sectional and longitudinal analysis.Mult. Scler. J. 2009; 15: 998-1005
- A guide to appropriate use of correlation coefficient in medical research.Malawi Med. J. 2012; 24: 69-71
- Smartphone-based gait and balance assessment in survivors of stroke: a systematic review.Disabil. Rehabil. Assist. Technol. 2022; : 1-11https://doi.org/10.1080/17483107.2022.2072527
- Smartphone-based symbol-digit modalities test reliably captures brain damage in multiple sclerosis.NPJ Digit. Med. 2021; 4: 36
- Evaluating the utility of smartphone-based sensor assessments in persons with multiple sclerosis in the real-world using an App (elevateMS): observational, prospective pilot digital health study.JMIR Mhealth Uhealth. 2020; 8: e22108
- Work-related problems in multiple sclerosis: a literature review on its associates and determinants.Disabil. Rehabil. 2016; 38: 936-944
- Comparing effect sizes in follow-up studies: ROC area, Cohen's d, and r.Law Hum. Behav. 2005; 29: 615-620
- A new computerised cognitive test for the detection of information processing speed impairment in multiple sclerosis.Mult. Scler. J. 2013; 19: 1665-1672
- Factors related to difficulties with employment in patients with multiple sclerosis: a review of 2002–2011 literature.Int. J. Rehabil. Res. 2013; 36: 105-111
- Symbol digit modalities test: a valid clinical trial endpoint for measuring cognition in multiple sclerosis.Mult. Scler. J. 2018; 25: 1781-1790
- MSCopilot: new smartphone-based digital biomarkers correlate with expanded disability status scale scores in people with multiple sclerosis.Mult. Scler. Relat. Disord. 2021; 55103164
- Symbol digit modalities test variant in a smartphone app for persons with multiple sclerosis: validation study.JMIR Mhealth Uhealth. 2020; 8: e18160
- Beyond cognitive dysfunction: relevance of ecological validity of neuropsychological tests in multiple sclerosis.Mult. Scler. J. 2019; 25: 1412-1419
- Comorbid anxiety, depression, and cognition in MS and other immune-mediated disorders.Neurology. 2019; 92: e406
- Practice effects of mobile tests of cognition, dexterity, and mobility on patients with multiple sclerosis: data analysis of a smartphone-based observational study.J. Med. Internet Res. 2021; 23: e30394
- Computerized neuropsychological assessment devices in multiple sclerosis: a systematic review.Mult. Scler. 2019; 25: 1848-1869
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy