Advertisement
Research Article| Volume 73, 104658, May 2023

Download started.

Ok

S3I-201, a selective stat3 inhibitor, ameliorates clinical symptoms in a mouse model of experimental autoimmune encephalomyelitis through the regulation of multiple intracellular signalling in Th1, Th17, and treg cells

      Highlights

      • We investigated the possible immunomodulatory effects of S3I-201.
      • S3I-201 attenuates clinical symptoms of EAE mice.
      • S3I-201 downregulates Th1/Th17 signaling in EAE mice.
      • S3I-201 upregulates treg transcription factor signaling.
      • S3I-201 could be used as a novel candidate for MS treatment.

      Abstract

      CD4+ T cells, specifically Th cells (Th1 and Th17) and regulatory T cells (Tregs), play a pivotal role in the pathogenesis of multiple sclerosis (MS), a demyelinating autoimmune disease of the CNS. STAT3 inhibitors are potential therapeutic targets for several immune disorders. In this study, we investigated the role of a well-known STAT3 inhibitor, S3I-201, in experimental autoimmune encephalomyelitis (EAE), a model of MS. Following induction of EAE, mice were intraperitoneally administered S3I-201 (10 mg/kg) each day, beginning on day 14 and continuing till day 35 and were evaluated for clinical signs. Flow cytometry was used to investigate further the effect of S3I-201 on Th1 (IFN-γ, STAT1, pSTAT1, and T-bet), Th17 (IL-17A, STAT3, pSTAT3, and RORγt), and regulatory T cells (Treg, IL-10, TGF-β1, and FoxP3) expressed in splenic CD4+ T cells. Moreover, we analyzed the effects of S3I-201 on mRNA and protein expression of IFN-γ, T-bet, IL-17A, STAT1, STAT3, pSTAT1, pSTAT3, RORγ, IL-10, TGF-β1, and FoxP3 in the brains of EAE mice. The severity of clinical scores decreased in S3I-201-treated EAE mice compared to vehicle-treated EAE mice. S3I-201 treatment significantly decreased CD4+IFN-γ+, CD4+STAT1+, CD4+pSTAT1+, CD4+T-bet+, CD4+IL-17A+, CD4+STAT3+, CD4+pSTAT3+, and CD4+RORγt+ and increased CD4+IL-10+, CD4+TGF-β1+, and CD4+FoxP3+ in the spleens of EAE mice. Additionally, S3I-201 administration in EAE mice significantly decreased the mRNA and protein expression of Th1 and Th17 and increased those of Treg. These results suggest that S3I-201 may have novel therapeutic potential against MS.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ahmad S.F.
        • Ansari M.A.
        • Nadeem A.
        • Bakheet S.A.
        • Alshammari M.A.
        • Khan M.R.
        • Alsaad A.M.S.
        • Attia S.M.
        S3I-201, a selective Stat3 inhibitor, restores neuroimmune function through upregulation of Treg signaling in autistic BTBR T+ Itpr3tf/J mice.
        Cell Signal. 2018; 52: 127-136
        • Ahmad S.F.
        • Ansari M.A.
        • Nadeem A.
        • Bakheet S.A.
        • et al.
        The Stat3 inhibitor, S3I-201, downregulates lymphocyte activation markers, chemokine receptors, and inflammatory cytokines in the BTBR T+ Itpr3tf/J mouse model of autism.
        Brain Res. Bull. 2019; 152: 27-34
        • Ahmad S.F.
        • Nadeem A.
        • Ansari M.A.
        • Bakheet S.A.
        • et al.
        CC chemokine receptor 5 antagonist alleviates inflammation by regulating IFN-γ/IL-10 and STAT4/Smad3 signaling in a mouse model of autoimmune encephalomyelitis.
        Cell Immunol. 2022; 379104580
        • Alhazzani K.
        • Ahmad S.F.
        • NO Al-Harbi
        • Attia S.M.
        • Bakheet S.A.
        • et al.
        Pharmacological inhibition of STAT3 by stattic ameliorates clinical symptoms and reduces autoinflammation in myeloid, lymphoid, and neuronal tissue compartments in relapsing-remitting model of experimental autoimmune encephalomyelitis in SJL/J Mice.
        Pharmaceutics. 2021; 13: 925
        • Ansari M.A.
        • Nadeem A.
        • Attia S.M.
        • Bakheet S.A.
        • Raish M.
        • Ahmad S.F.
        Adenosine A2A receptor modulates neuroimmune function through Th17/retinoid-related orphan receptor gamma t (RORγt) signaling in a BTBR T+ Itpr3tf/J mouse model of autism.
        Cell Signal. 2017; 36: 14-24
        • Ansari M.A.
        • Nadeem A.
        • Alshammari M.A.
        • Attia S.M.
        • Bakheet S.A.
        • et al.
        Cathepsin B inhibitor alleviates Th1, Th17, and Th22 transcription factor signaling dysregulation in experimental autoimmune encephalomyelitis.
        Exp Neurol. 2022; 351113997
        • Bettelli E.
        • Sullivan B.
        • Szabo S.J.
        • Sobel R.A.
        • Glimcher L.H.
        • Kuchroo V.K.
        Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis.
        J. Exp. Med. 2004; 200: 79-87
        • Compston A.
        • Coles A.
        Multiple sclerosis.
        Lancet. 2008; 372: 1502-1517
        • Constantinescu C.S.
        • Farooqi N.
        • O'Brien K.
        • Gran B
        Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS).
        Br. J. Pharmacol. 2011; 164: 1079-1106
        • de Beaucoudrey L.
        • Puel A.
        • Filipe-Santos O.
        • Cobat A.
        • Ghandil P.
        • et al.
        Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells.
        J. Exp. Med. 2008; 205: 1543-1550
        • Feger U.
        • Luther C.
        • Poeschel S.
        • Melms A.
        • Tolosa E.
        • Wiendl H.
        Increased frequency of CD4+CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients.
        Clin. Exp. Immunol. 2007; 147: 412-418
        • Furlan R.
        • Cuomo C.
        • Martino G
        Animal models of multiple sclerosis.
        Methods Mol. Biol. 2009; 549: 157-173
        • Furtado G.C.
        • Marcondes M.C.
        • Latkowski J.A.
        • Tsai J.
        • Wensky A.
        • Lafaille J.J.
        Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis.
        J. Immunol. 2008; 181: 4648-4655
        • Ghareghani M.
        • Dokoohaki S.
        • Ghanbari A.
        • Farhadi N.
        • Zibara K.
        • Khodadoust S.
        • Parishani M.
        • Ghavamizadeh M.
        • Sadeghi H.
        Melatonin exacerbates acute experimental autoimmune encephalomyelitis by enhancing the serum levels of lactate: a potential biomarker of multiple sclerosis progression.
        Clin. Exp. Pharmacol. Physiol. 2017; 44: 52-61
        • González-García C.
        • Bravo B.
        • Ballester A.
        • Gómez-Pérez R.
        • et al.
        Comparative assessment of PDE 4 and 7 inhibitors as therapeutic agents in experimental autoimmune encephalomyelitis.
        Br. J. Pharmacol. 2013; 170: 602-613
        • Grifka-Walk H.M.
        • Giles D.A.
        • Segal B.M.
        IL-12-polarized Th1 cells produce GM-CSF and induce EAE independent of IL-23.
        Eur. J. Immunol. 2015; 45: 2780-2786
        • Haas J.
        • Hug A.
        • Viehover A.
        • et al.
        Reduced suppressive effect of CD4(+) CD25(high) regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis.
        Eur. J. Immunol. 2005; 35: 3343-3352
        • Haider L.
        • Zrzavy T.
        • Hametner S.
        • Höftberger R.
        • Bagnato F.
        • Grabner G.
        • Trattnig S.
        • Pfeifenbring S.
        • Brück W.
        • Lassmann H.
        The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain.
        Brain. 2016; 139: 807-815
        • Hofstetter H.H.
        • Ibrahim S.M.
        • Koczan D.
        • et al.
        Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis.
        Cell Immunol. 2005; 237: 123-130
        • Hu D.
        • Wan L.
        • Chen M.
        • Caudle Y.
        • LeSage G.
        • Li Q.
        • Yin D.
        Essential role of IL-10/STAT3 in chronic stress-induced immune suppression.
        Brain Behav. Immun. 2014; 36: 118-127
        • Huan J.
        • Culbertson N.
        • Spencer L.
        • Bartholomew R.
        • Burrows G.G.
        • et al.
        Decreased FOXP3 levels in multiple sclerosis patients.
        J. Neurosci. Res. 2005; 81: 45-52
        • Huang W.J.
        • Chen W.W.
        • Zhang X.
        Multiple sclerosis: pathology, diagnosis and treatments.
        Exp. Ther. Med. 2017; 13: 3163-3166
        • Huber S.
        • Gagliani N.
        • Esplugues E.
        • O'Connor W.
        • et al.
        Th17 cells express interleukin-10 receptor and are controlled by Foxp3(−) and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner.
        Immunity. 2011; 34: 554-565
        • Huppert J.
        • Closhen D.
        • Croxford A.
        • White R.
        • Kulig P.
        • et al.
        Cellular mechanisms of IL-17-induced blood-brain barrier disruption.
        FASEB J. 2010; 24: 1023-1034
        • Ivanov I.I.
        • McKenzie B.S.
        • Zhou L.
        • Tadokoro C.E.
        • Lepelley A.
        • Lafaille J.J.
        • Cua D.J.
        • Littman D.R.
        The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells.
        Cell. 2006; 126: 1121-1133
        • Jäger A.
        • Dardalhon V.
        • Sobel R.A.
        • Bettelli E.
        • Kuchroo V.K.
        Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes.
        J. Immunol. 2009; 183: 7169-7177
        • Jolivel V.
        • Luessi F.
        • Masri J.
        • Kraus S.H.
        • Hubo M.
        • et al.
        Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis.
        Brain. 2013; 136: 1048-1066
        • Kang Z.
        • Altuntas C.Z.
        • Gulen M.F.
        • Liu C.
        • Giltiay N.
        • et al.
        Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis.
        Immunity. 2010; 32: 414-425
        • Kebir H.
        • Kreymborg K.
        • Ifergan I.
        • Dodelet-Devillers A.
        • et al.
        Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation.
        Nat. Med. 2007; 13: 1173-1175
        • Kempuraj D.
        • Thangavel R.
        • Natteru P.A.
        • et al.
        Neuroinflammation induces neurodegeneration.
        J. Neurol. Neurosurg. Spine. 2016; 1: 1003
        • Knochelmann H.M.
        • Dwyer C.J.
        • Bailey S.R.
        • Amaya S.M.
        • et al.
        When worlds collide: th17 and Treg cells in cancer and autoimmunity.
        Cell Mol. Immunol. 2018; 15: 458-469
        • Kohm A.P.
        • Carpentier P.A.
        • Anger H.A.
        • Miller S.D.
        Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis.
        J. Immunol. 2002; 169: 4712-4716
        • Komiyama Y.
        • Nakae S.
        • Matsuki T.
        • et al.
        IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis.
        J. Immunol. 2006; 177: 566-573
        • Korn T.
        • Reddy J.
        • Gao W.
        • et al.
        Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation.
        Nat. Med. 2007; 13: 423-431
        • Langrish C.L.
        • Chen Y.
        • Blumenschein W.M.
        • Mattson J.
        • et al.
        IL-23 drives a pathogenic T cell population that induces autoimmune inflammation.
        J. Exp. Med. 2005; 201: 233-240
        • Liu Y.
        • Teige I.
        • Birnir B.
        Issazadeh-Navikas S. neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE.
        Nat. Med. 2006; 12: 518-525
        • Liu J.
        • Lin F.
        • Strainic M.G.
        • An F.
        • Miller R.H.
        • Altuntas C.Z.
        • Heeger P.S.
        • Tuohy V.K.
        • Medof M.E
        IFN-gamma and IL-17 production in experimental autoimmune encephalomyelitis depends on local APC-T cell complement production.
        J. Immunol. 2008; 180: 5882-5889
        • Liu X.
        • Lee Y.S.
        • Yu C.R.
        • Egwuagu C.E.
        Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases.
        J. Immunol. 2008; 180: 6070-6076
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.
        Methods. 2001; 25: 402-408
        • Manel N.
        • Unutmaz D.
        • Littman D.R.
        The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat.
        Nat. Immunol. 2008; 9: 641-649
        • Martin R.
        • Sospedra M.
        • Rosito M.
        • Engelhardt B.
        Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis.
        Eur. J. Immunol. 2016; 46: 2078-2090
        • Martinez N.E.
        • Sato F.
        • Omura S.
        • Kawai E.
        • Takahashi S.
        • Yoh K.
        • RORγt T.I.
        but not T-bet, overexpression exacerbates an autoimmune model for multiple sclerosis.
        J. Neuroimmunol. 2014; 276: 142-149
        • Mastorodemos V.
        • Ioannou M.
        • Verginis P.
        Cell-based modulation of autoimmune responses in multiple sclerosis and experimental autoimmmune encephalomyelitis: therapeutic implications.
        Neuroimmunomod. 2015; 22: 181-195
        • McGeachy M.J.
        • Stephens L.A.
        • Anderton S.M.
        Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system.
        J. Immunol. 2005; 175: 3025-3032
        • McGinley A.M.
        • Edwards S.C.
        • Raverdeau M.
        • Mills K.H.G
        Th17 cells, γδ T cells and their interplay in EAE and multiple sclerosis.
        J. Autoimmun. 2018; (S0896-8411(18)30007-6)
        • Motl R.W.
        • Sandroff B.M.
        • Kwakkel G.
        • Dalgas U.
        • Feinstein A.
        • Heesen C.
        • et al.
        Exercise in patients with multiple sclerosis.
        Lancet Neurol. 2017; 16: 848-856
        • Nath N.
        • Prasad R.
        • Giri S.
        • Singh A.K.
        • Singh I.
        T-bet is essential for the progression of experimental autoimmune encephalomyelitis.
        Immunology. 2006; 118: 384-391
        • O'Connor R.A.
        • Prendergast C.T.
        • Sabatos C.A.
        • et al.
        Cutting edge: th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis.
        J. Immunol. 2008; 181: 3750-3754
        • Pang M.
        • Ma L.
        • Gong R.
        • Tolbert E.
        • et al.
        A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy.
        Kidney Int. 2010; 78: 257-268
        • Planas R.
        • Metz I.
        • Ortiz Y.
        • Vilarrasa N.
        • Jelčić I.
        • Salinas-Riester G.
        • et al.
        Central role of Th2/Tc2 lymphocytes in pattern II multiple sclerosis lesions.
        Ann. Clin. Transl. Neurol. 2015; 2: 875-893
        • Procaccini C.
        • De Rosa V.
        • Pucino V.
        • Formisano L.
        • Matarese G.
        Animal models of multiple sclerosis.
        Eur. J. Pharmacol. 2015; 759: 182-191
        • Setiadi A.F.
        • Abbas A.R.
        • Jeet S.
        • Wong K.
        • Bischof A.
        • et al.
        IL-17A is associated with the breakdown of the blood-brain barrier in relapsing-remitting multiple sclerosis.
        J. Neuroimmunol. 2019; 332: 147-154
        • Shi C.
        • Cha J.
        • Gong J.
        • Wang S.
        • Zeng P.
        • et al.
        Amelioration of experimental autoimmune encephalomyelitis in alzheimer's disease mouse models: a potential role for Aβ.
        Cells. 2022; 11: 1004
        • Siddiquee K.
        • Zhang S.
        • Guida W.C.
        • et al.
        Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity.
        Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 7391-7396
        • Steinman L.
        • Zamvil S.S.
        Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis.
        Trends Immunol. 2005; 26: 565-571
        • Steinman L.
        • Zamvil S.S.
        How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis.
        Ann. Neurol. 2006; 60: 12-21
        • Stockinger B.
        • Omenetti S.
        The dichotomous nature of T helper 17 cells.
        Nat. Rev. Immunol. 2017; 17: 535-544
        • Szabo S.J.
        • Kim S.T.
        • Costa G.L.
        • Zhang X.
        • Fathman C.G.
        • Glimcher L.H.
        A novel transcription factor, T-bet, directs Th1 lineage commitment.
        Cell. 2000; 100: 655-669
        • Tanaka S.
        • Suto A.
        • Iwamoto T.
        • Kashiwakuma D.
        • Kagami S.
        • Suzuki K.
        • et al.
        Sox5 and C-Maf cooperatively induce Th17 cell differentiation via RORγt induction as downstream targets of stat3.
        J. Exp. Med. 2014; 211: 1857-1874
        • Tzartos J.S.
        • Friese M.A.
        • Craner M.J.
        • Palace J.
        • Newcombe J.
        • Esiri M.M.
        • Fugger L.
        Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis.
        Am. J. Pathol. 2008; 172: 146-155
        • Van Langelaar J.
        • van der Vuurst de Vries R.M.
        • Janssen M.
        • et al.
        T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention.
        Brain. 2018; 141: 1334-1349
        • Venken K.
        • Hellings N.
        • Thewissen M.
        • Somers V.
        • Hensen K.
        • Rummens J.L.
        • Medaer R.
        • Hupperts R.
        • Stinissen P.
        Compromised CD4+ CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level.
        Immunology. 2008; 123: 79-89
        • Viglietta V.
        • Baecher-Allan C.
        • Weiner H.L.
        • Hafler D.A.
        Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis.
        J. Exp. Med. 2004; 199: 971-979
        • Wang Z.F.
        • Li Q.
        • Liu S.B.
        • Mi W.L.
        • Hu S.
        • Zhao J.
        • et al.
        Aspirin-triggered Lipoxin A4 attenuates mechanical allodynia in association with inhibiting spinal JAK2/STAT3 signaling in neuropathic pain in rats.
        Neuroscience. 2014; 273: 65-78
        • Wang J.
        • Song X.
        • Tan G.
        • Sun P.
        • Guo L.
        • Zhang N.
        • Wang J.
        • Li B.
        NAD+ improved experimental autoimmune encephalomyelitis by regulating SIRT1 to inhibit PI3K/Akt/mTOR signaling pathway.
        Aging (Albany NY). 2021; 13: 25931-25943
        • Wang C.
        • Yang J.
        • Xie L.
        • Saimaier K.
        • Zhuang W.
        • et al.
        Methyl butyrate alleviates experimental autoimmune encephalomyelitis and regulates the balance of effector T cells and regulatory T cells.
        Inflammation. 2022; 45: 977-991
        • Xie C.
        • Ciric B.
        • Yu S.
        • Zhang G.X.
        • Rostami A.
        IL-12Rβ2 has a protective role in relapsing-remitting experimental autoimmune encephalomyelitis.
        J. Neuroimmunol. 2016; 291: 59-69
        • Xie L.
        • Saimaier K.
        • Wang C.
        • Yang J.
        • Han M.
        • Lv J.
        • Zhuang W.
        • Liu G.
        • Du C.
        Methyl acetate arrests Th1 in peripheral immune system and alleviates CNS inflammation in EAE.
        Int. Immunopharmacol. 2021; 101108291
        • Xufre C.
        • Costa M.
        • Roura-Mir C.
        • Codina-Busqueta E.
        • et al.
        Low frequency of GITR+ T cells in ex vivo and in vitro expanded Treg cells from type 1 diabetic patients.
        Int. Immunol. 2013; 25: 563-574
        • Zhang X.
        • Koldzic D.N.
        • Izikson L.
        • et al.
        IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells.
        Int. Immunol. 2004; 16: 249-256
        • Zhang X.
        • Reddy J.
        • Ochi H.
        • Frenkel D.
        • Kuchroo V.K.
        • Weiner H.L.
        Recovery from experimental allergic encephalomyelitis is TGF-beta dependent and associated with increases in CD4+LAP+ and CD4+CD25+ T cells.
        Int. Immunol. 2006; 18: 495-503
        • Zhang H.
        • Qi Y.
        • Yuan Y.
        • Cai L.
        • Xu H.
        • Zhang L.
        • Su B.
        • Nie H.
        Paeoniflorin ameliorates experimental autoimmune encephalomyelitis via inhibition of dendritic cell function and Th17 cell differentiation.
        Sci. Rep. 2017; 7: 41887