Advertisement
Original research article| Volume 73, 104614, May 2023

Spinal cord and brain corticospinal tract lesions are associated with motor progression in tumefactive multiple sclerosis

      Highlights

      • Spinal cord lesions correlate with progressive disease in typical relapsing remitting MS.
      • Tumefactive demyelinating lesions occur in ∼2% of MS population.
      • Tumefactive MS (TMS) presents with signs/symptoms of a cerebral mass.
      • Progressive disease is uncommon in TMS.
      • Progression in TMS typically leads to motor impairment.

      Abstract

      Background

      Spinal cord lesions have been associated with progressive disease in individuals with typical relapsing remitting MS (RRMS).

      Objective

      In the current study, we aimed to determine if progressive disease is associated with spinal cord lesions in those with tumefactive multiple sclerosis (MS).

      Methods

      Retrospective chart review of individuals presenting to Mayo Clinic with tumefactive MS with spinal cord MRIs available (n=159). Clinical data were extracted by chart review. Brain and spinal cord MRIs were reviewed to characterize the tumefactive demyelinating lesion(s) and assess the burden of spinal cord disease.

      Results

      A total of 69 (43%) had spinal cord lesions. Progressive demyelinating disease was documented in 13 (8%); the majority (11/13) with secondary progressive disease. The method of progression was myelopathic in 8/13 (62%), cognitive in 3/13 (23%), motor from a supratentorial lesion in 2/13 (16%). EDSS at last follow-up was higher in those with progression than those without (median 6.0 (2.0-10.0) vs. 2.5 (0-10.0), p = < 0.001). Progressive demyelinating disease occurred in a minority.

      Conclusions

      Patients with progression typically experienced progressive motor impairment, and this occurred exclusively in individuals with lesions in the corticospinal tracts of the brain and/or the spinal cord.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Altintas A
        • Petek B
        • Isik N
        • Terzi M
        • Bolukbasi F
        • Tavsanli M
        • Saip S
        • Boz C
        • Aydin T
        • Arici-Duz O.
        Clinical and radiological characteristics of tumefactive demyelinating lesions: follow-up study.
        Multip. Sclerosis J. 2012; 18: 1448-1453
        • Arrambide G
        • Rovira A
        • Sastre-Garriga J
        • et al.
        Spinal cord lesions: a modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor.
        Mult. Scler. 2018; 24: 301-312https://doi.org/10.1177/1352458517697830
        • Balloy G
        • Pelletier J
        • Suchet L
        • et al.
        Inaugural tumor-like multiple sclerosis: clinical presentation and medium-term outcome in 87 patients.
        J. Neurol. 2018; 265: 2251-2259https://doi.org/10.1007/s00415-018-8984-7
        • Bashir K
        • Whitaker JN.
        Clinical and laboratory features of primary progressive and secondary progressive MS.
        Neurology. 1999; 53: 765-771https://doi.org/10.1212/wnl.53.4.765
        • Benedict RH
        • Zivadinov R.
        Risk factors for and management of cognitive dysfunction in multiple sclerosis.
        Nat. Rev. Neurol. May. 2011; 7: 332-342https://doi.org/10.1038/nrneurol.2011.61
        • Bot JC
        • Barkhof F
        • Lycklama a Nijeholt G
        • van Schaardenburg D
        • Voskuyl AE
        • Ader HJ
        • Pijnenburg JA
        • Polman CH
        • Uitdehaag BM
        • Vermeulen EG
        • Castelijns JA.
        Differentiation of multiple sclerosis from other inflammatory disorders and cerebrovascular disease: value of spinal MR imaging.
        Radiology. 2002; 223: 46-56https://doi.org/10.1148/radiol.2231010707
        • Bot JC
        • Barkhof F
        • Polman CH
        • Lycklama à Nijeholt GJ
        • de Groot V
        • Bergers E
        • Ader HJ
        • Castelijns JA
        Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination.
        Neurology. 2004; 62: 226-233https://doi.org/10.1212/wnl.62.2.226
        • Brod SA
        • Lindsey JW
        • Nelson F.
        Tumefactive demyelination: clinical outcomes, lesion evolution and treatments.
        Mult. Scler. J. Exp. Transl. Clin. 2019; 5https://doi.org/10.1177/2055217319855755
        • Brownlee WJ
        • Altmann DR
        • Alves Da Mota P
        • Swanton JK
        • Miszkiel KA
        • Wheeler-Kingshott CG
        • Ciccarelli O
        • Miller DH
        Association of asymptomatic spinal cord lesions and atrophy with disability 5 years after a clinically isolated syndrome.
        Mult. Scler. 2017; 23: 665-674https://doi.org/10.1177/1352458516663034
        • Conway BL
        • Zeydan B
        • Uygunoğlu U
        • Novotna M
        • Siva A
        • Pittock SJ
        • Atkinson EJ
        • Rodriguez M
        • Kantarci OH.
        Age is a critical determinant in recovery from multiple sclerosis relapses.
        Mult. Scler. 2019; 25: 1754-1763https://doi.org/10.1177/1352458518800815
        • Fereidan-Esfahani M
        • Tobin WO.
        Cyclophosphamide in treatment of tumefactive multiple sclerosis.
        Mult. Scler. Relat. Disord. 2021; 47https://doi.org/10.1016/j.msard.2020.102627
        • Fereidan-Esfahani M
        • Decker PA
        • Eckel Passow JE
        • Lucchinetti CF
        • Flanagan EP
        • Tobin WO
        Population-based incidence and clinico-radiological characteristics of tumefactive demyelination in Olmsted County, Minnesota, United States.
        Eur. J. Neurol. 2022; 29: 782-789https://doi.org/10.1111/ene.15182
        • Hardy TA
        • Chataway J.
        Tumefactive demyelination: an approach to diagnosis and management.
        J. Neurol. Neurosurg. Psychiatry. 2013; 84: 1047-1053https://doi.org/10.1136/jnnp-2012-304498
        • Jackson-Tarlton CS
        • Flanagan EP
        • Messina SA
        • Barakat B
        • Ahmad R
        • Kantarci OH
        • Weinshenker BG
        • Keegan BM.
        Progressive motor impairment from “critical” demyelinating lesions of the cervicomedullary junction.
        Mult. Scler. 2022; https://doi.org/10.1177/13524585221114438
        • Kalinowska-Lyszczarz A
        • Tillema JM
        • Tobin WO
        • Guo Y
        • Fitz-Gibbon PD
        • Weigand SD
        • Giraldo-Chica M
        • Port JD
        • Lucchinetti CF.
        Long-term clinical, MRI, and cognitive follow-up in a large cohort of pathologically confirmed, predominantly tumefactive multiple sclerosis.
        Mult. Scler. 2022; 28: 441-452https://doi.org/10.1177/13524585211024162
        • Kearney H
        • Miller DH
        • Ciccarelli O.
        Spinal cord MRI in multiple sclerosis–diagnostic, prognostic and clinical value.
        Nat. Rev. Neurol. 2015; 11https://doi.org/10.1038/nrneurol.2015.80
        • Keegan BM
        • Kaufmann TJ
        • Weinshenker BG
        • Kantarci OH
        • Schmalstieg WF
        • Paz Soldan MM
        • Flanagan EP
        Progressive solitary sclerosis: gradual motor impairment from a single CNS demyelinating lesion.
        Neurology. 2016; 87https://doi.org/10.1212/WNL.0000000000003235
        • Keegan BM
        • Kaufmann TJ
        • Weinshenker BG
        • Kantarci OH
        • Schmalstieg WF
        • Paz Soldan MM
        • Flanagan EP
        Progressive motor impairment from a critically located lesion in highly restricted CNS-demyelinating disease.
        Mult. Scler. 2018; 24: 1445-1452https://doi.org/10.1177/1352458518781979
        • Kerbrat A
        • Gros C
        • Badji A
        • et al.
        Multiple sclerosis lesions in motor tracts from brain to cervical cord: spatial distribution and correlation with disability.
        Brain Jul. 2020; 143: 2089-2105https://doi.org/10.1093/brain/awaa162
        • Kurtzke JF.
        Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
        Neurology. 1983; 33 (1444-1444)https://doi.org/10.1212/wnl.33.11.1444
        • Kutzelnigg A
        • Lucchinetti CF
        • Stadelmann C
        • Brück W
        • Rauschka H
        • Bergmann M
        • Schmidbauer M
        • Parisi JE
        • Lassmann H.
        Cortical demyelination and diffuse white matter injury in multiple sclerosis.
        Brain. Nov 2005; 128: 2705-2712https://doi.org/10.1093/brain/awh641
        • Lublin FD
        • Reingold SC
        • Cohen JA
        • et al.
        Defining the clinical course of multiple sclerosis: the 2013 revisions.
        Neurology. 2014; 83: 278-286https://doi.org/10.1212/WNL.0000000000000560
        • Lucchinetti CF
        • Gavrilova RH
        • Metz I
        • et al.
        Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis.
        Brain. 2008; 131: 1759-1775https://doi.org/10.1093/brain/awn098
        • Mahajan KR
        • Nakamura K
        • Cohen JA
        • Trapp BD
        • Ontaneda D.
        Intrinsic and Extrinsic Mechanisms of Thalamic Pathology in Multiple Sclerosis.
        Ann. Neurol. 2020; 88: 81-92https://doi.org/10.1002/ana.25743
        • McDonnell GV
        • Hawkins SA.
        Clinical study of primary progressive multiple sclerosis in Northern Ireland.
        UK. J Neurol Neurosurg Psychiatry Apr. 1998; 64: 451-454https://doi.org/10.1136/jnnp.64.4.451
        • Moll NM
        • Rietsch AM
        • Thomas S
        • Ransohoff AJ
        • Lee JC
        • Fox R
        • Chang A
        • Ransohoff RM
        • Fisher E.
        Multiple sclerosis normal-appearing white matter: pathology-imaging correlations.
        Ann. Neurol. 2011; 70: 764-773https://doi.org/10.1002/ana.22521
        • Pittock SJ
        • McClelland R
        • Achenbach S
        • Konig F
        • Bitsch A
        • Brück W
        • Lassmann H
        • Parisi JE
        • Scheithauer B
        • Rodriguez M.
        Clinical course, pathological correlations, and outcome of biopsy proved inflammatory demyelinating disease.
        J. Neurol. Neurosurg. Psychiatry. 2005; 76: 1693-1697https://doi.org/10.1136/jnnp.2004.060624
        • Romero K
        • Shammi P
        • Feinstein A.
        Neurologists׳ accuracy in predicting cognitive impairment in multiple sclerosis.
        Mult. Scler. Relat. Disord. Jul 2015; 4: 291-295https://doi.org/10.1016/j.msard.2015.05.009
        • Sechi E
        • Buciuc M
        • Pittock SJ
        • et al.
        Positive Predictive Value of Myelin Oligodendrocyte Glycoprotein Autoantibody Testing.
        JAMA Neurol. 2021; 78: 741-746https://doi.org/10.1001/jamaneurol.2021.0912
        • Staff NP
        • Lucchinetti CF
        • Keegan BM.
        Multiple sclerosis with predominant, severe cognitive impairment.
        Arch. Neurol. 2009; 66: 1139-1143https://doi.org/10.1001/archneurol.2009.190
        • Stevenson VL
        • Miller DH
        • Rovaris M
        • et al.
        Primary and transitional progressive MS: a clinical and MRI cross-sectional study.
        Neurology. 1999; 52https://doi.org/10.1212/wnl.52.4.839
        • Swanton JK
        • Fernando KT
        • Dalton CM
        • Miszkiel KA
        • Altmann DR
        • Plant GT
        • Thompson AJ
        • Miller DH.
        Early MRI in optic neuritis: the risk for disability.
        Neurology Feb. 2009; 72: 542-550https://doi.org/10.1212/01.wnl.0000341935.41852.82
        • Tobin WO
        • Kalinowska-Lyszczarz A
        • Weigand SD
        • Guo Y
        • Tosakulwong N
        • Parisi JE
        • Metz I
        • Frischer JM
        • Lassmann H
        • Brück W
        • Linbo L
        • Lucchinetti CF.
        Clinical Correlation of Multiple Sclerosis Immunopathologic Subtypes.
        Neurology. 2021; 97: e1906-e1913https://doi.org/10.1212/WNL.0000000000012782
        • Traboulsee AL
        • Cornelisseª P
        • Sandberg-Wollheim M
        • Uitdehaag BM
        • Kappos L
        • Jongen PJ
        • Constantinescu CS
        • di Cantogno EV
        • Li DK.
        Prognostic factors for long-term outcomes in relapsing-remitting multiple sclerosis.
        Mult. Scler. J. Exp. Transl. Clin. 2016; 2https://doi.org/10.1177/2055217316666406
        • Tutuncu M
        • Tang J
        • Zeid NA
        • et al.
        Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis.
        Mult. Scler. 2013; 19: 188-198https://doi.org/10.1177/1352458512451510
        • Zeydan B
        • Gu X
        • Atkinson EJ
        • et al.
        Cervical spinal cord atrophy: an early marker of progressive MS onset.
        Neurol, Neuroimmunol, Neuroinflamm. 2018; 5: e43510https://doi.org/10.1212/NXI.0000000000000435