Advertisement

Clinical characteristics of late-onset neuromyelitis optica spectrum disorder

Published:January 15, 2023DOI:https://doi.org/10.1016/j.msard.2023.104517

      Highlights

      • Age at onset could have important implications for the long-term prognosis of NMOSD patients.
      • Several age-related disease characteristics, such as a higher proportion of thoracic myelitis, higher AQP4-IgG titters, and more WMHs in LO-NMOSD patients.
      • LO-NMOSD patients had worse outcomes, such as more painful sensory symptoms, sleep disorders, anxiety, and cognitive function, than did those with EO-NMOSD.

      Abstract

      Background

      Anti-aquaporin-4 (AQP-4) immunoglobulin G (IgG) is a major autoimmune antibody that contributes to the pathogenesis of neuromyelitis optica spectrum disorder (NMOSD). NMOSD often presents as disability, severe sensory impairment, and sleep disorders, which can cause anxiety and depression and further affect the quality of life. The age of onset is a key factor influencing the prognosis of NMOSD. However, this result was based on studies involving only anti-aquaporin-4 (AQP4) immunoglobulin G (IgG)-seropositive NMOSD patients or studies using the 2006 NMOSD diagnosis criteria. Therefore, further study of the age of onset of NMOSD is valuable. This study aimed to describe the clinical and magnetic resonance imaging (MRI) differences between early-onset neuromyelitis optica spectrum disorder (EO-NMOSD) and late-onset (LO)-NMOSD patients.

      Methods

      Fifty patients were enrolled, their anti-AQP4-IgG titers were measured, and brain and spinal cord MRIs were obtained. Additionally, several questionnaires related to disease severity, anxiety, depression, cognition, sleep, pain, and fatigue were collected.

      Results

      Higher AQP4-IgG seropositivity, higher AQP4-IgG titer, frequency of thoracic myelitis, and white matter hyperintensities (WMH), as well as greater severity of disability, greater severity of sleep disorders, higher anxiety, poorer cognitive function, and higher clinical dementia rating (CDR)-community affairs scores were observed in late-onset (LO)-NMOSD patients than those in early-onset (EO)-NMOSD. AQP4-IgG titer positively correlated with age, annual relapse rate, Expanded Disability Status Scale (EDSS) sensory scores, Activity of Daily Living Scale (ADL) scores, and Pittsburgh Sleep Quality Index (PSQI) scores. The EDSS-sensory scores positively correlated with age, relapse time, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, PSQI, ADL, and CDR. WMH was positively correlated with age, EDSS-sensory scores, PSQI scores, and CDR scores and negatively correlated with the California Verbal Learning Test scores.

      Conclusion

      LO-NMOSD patients have worse prognoses than those of EO-NMOSD patients. Higher AQP4-IgG titers, more WMHs, thoracic myelitis, and severe sensory symptoms are associated with cognition, depression, anxiety, and sleep disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wingerchuk D.M.
        • Banwell B.
        • Bennett J.L.
        • et al.
        International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.
        Neurology. 2015; 85 (2015/06/21): 177-189https://doi.org/10.1212/wnl.0000000000001729
        • Lennon V.A.
        • Wingerchuk D.M.
        • Kryzer T.J.
        • et al.
        A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.
        Lancet. 2004; 364 (London, England)2004/12/14: 2106-2112https://doi.org/10.1016/s0140-6736(04)17551-x
        • Viswanathan S.
        • Wah L.M.
        A nationwide epidemiological study on the prevalence of multiple sclerosis and neuromyelitis optica spectrum disorder with important multi-ethnic differences in Malaysia.
        Mult. Scler. 2019; 25 (2018/08/17): 1452-1461https://doi.org/10.1177/1352458518792430
        • Zekeridou A.
        • Lennon V.A.
        Aquaporin-4 autoimmunity.
        Neurol. Neuroimmunol. Neuroinflamm. 2015; 2 (2015/07/18): e110https://doi.org/10.1212/nxi.0000000000000110
        • Liu C.
        • Shi M.
        • Zhu M.
        • et al.
        Comparisons of clinical phenotype, radiological and laboratory features, and therapy of neuromyelitis optica spectrum disorder by regions: update and challenges.
        Autoimmun. Rev. 2022; 21102921https://doi.org/10.1016/j.autrev.2021.102921
        • Reindl M.
        • Waters P.
        Myelin oligodendrocyte glycoprotein antibodies in neurological disease.
        Nat. Rev. Neurol. 2019; 15 (2018/12/19): 89-102https://doi.org/10.1038/s41582-018-0112-x
        • Juryńczyk M.
        • Craner M.
        • Palace J.
        Overlapping CNS inflammatory diseases: differentiating features of NMO and MS.
        J. Neurol. Neurosurg. Psychiatry. 2015; 86 (2014/09/25): 20-25https://doi.org/10.1136/jnnp-2014-308984
        • Pan J.
        • Zhao P.
        • Cai H.
        • et al.
        Hypoxemia, sleep disturbances, and depression correlated with fatigue in neuromyelitis optica spectrum disorder.
        CNS Neurosci. Ther. 2015; 21: 599-606https://doi.org/10.1111/cns.12411
        • Chavarro V.S.
        • Mealy M.A.
        • Simpson A.
        • et al.
        Insufficient treatment of severe depression in neuromyelitis optica spectrum disorder.
        Neurol. Neuroimmunol. Neuroinflamm. 2016; 3: e286
        • Tackley G.
        • Vecchio D.
        • Hamid S.
        • et al.
        Chronic neuropathic pain severity is determined by lesion level in aquaporin 4-antibody-positive myelitis.
        J. Neurol. Neurosurg. Psychiatry. 2017; 88 (2016/11/26): 165-169https://doi.org/10.1136/jnnp-2016-314991
        • López Pardo P.
        • Jiménez Rojas C.
        • Moral Carretón M
        Neuromyelitis optica and tactile and visual hallucinations in an elderly patient.
        Age Ageing. 2017; 46 (2017/02/10): 156-157https://doi.org/10.1093/ageing/afw170
        • Suchdev K.
        • Razmjou S.
        • Venkatachalam P.
        • et al.
        Late onset neuromyelitis optica mimicking an acute stroke in an elderly patient.
        J. Neuroimmunol. 2017; 309 (2017/06/12): 1-3https://doi.org/10.1016/j.jneuroim.2017.04.006
        • Sechi E.
        • Addis A.
        • Batzu L.
        • et al.
        Late presentation of NMOSD as rapidly progressive leukoencephalopathy with atypical clinical and radiological findings.
        Mult. Scler. 2018; 24 (2017/08/18): 685-688https://doi.org/10.1177/1352458517721661
        • Leguy S.
        • Le Page E.
        • Drapier S.
        Elderly onset neuromyelitis optica spectrum disorder: a case report.
        J. Neurol. 2021; 268 (2021/08/17): 4897-4898https://doi.org/10.1007/s00415-021-10719-y
        • Fragoso Y.D.
        • Ruocco H.H.
        • Dias R.M.
        • et al.
        Late onset of neuromyelitis optica spectrum disorders.
        Neurol. Ther. 2019; 8 (2019/07/04): 477-482https://doi.org/10.1007/s40120-019-0143-2
        • Carnero Contentti E.
        • Daccach Marques V.
        • Soto de Castillo I.
        • et al.
        Clinical features and prognosis of late-onset neuromyelitis optica spectrum disorders in a Latin American cohort.
        J. Neurol. 2020; 267 (2020/01/15): 1260-1268https://doi.org/10.1007/s00415-020-09699-2
        • Sepulveda M.
        • Delgado-García G.
        • Blanco Y.
        • et al.
        Late-onset neuromyelitis optica spectrum disorder: the importance of autoantibody serostatus.
        Neurol. Neuroimmunol. Neuroinflamm. 2019; 6https://doi.org/10.1212/NXI.0000000000000607
        • Seok J.M.
        • Cho H.J.
        • Ahn S.W.
        • et al.
        Clinical characteristics of late-onset neuromyelitis optica spectrum disorder: a multicenter retrospective study in Korea.
        Mult. Scler. 2017; 23 (2017/01/07): 1748-1756https://doi.org/10.1177/1352458516685416
        • Mao Z.
        • Yin J.
        • Zhong X.
        • et al.
        Late-onset neuromyelitis optica spectrum disorder in AQP4-seropositivepatients in a Chinese population.
        BMC Neurol. 2015; 15 (2015/09/05): 160https://doi.org/10.1186/s12883-015-0417-y
        • Kennedy A.
        • Beland B.
        • Brust T.
        • et al.
        Late-onset neuromyelitis optica spectrum disorder presenting with area postrema syndrome.
        Can. J. Neurol. Sci. 2020; 47 (2020/02/13): 422-424https://doi.org/10.1017/cjn.2020.27
        • Delgado-García G.
        • Antonio-Luna E.
        • López-Mena D.
        • et al.
        AQP4-IgG-positive neuromyelitis optica spectrum disorder with late onset in Mexico.
        Mult. Scler. Relat. Disord. 2020; 43 (2020/05/31)102221https://doi.org/10.1016/j.msard.2020.102221
        • Kim H.J.
        • Paul F.
        • Lana-Peixoto M.A.
        • et al.
        MRI characteristics of neuromyelitis optica spectrum disorder: an international update.
        Neurology. 2015; 84: 1165-1173https://doi.org/10.1212/WNL.0000000000001367
        • Jarius S.
        • Probst C.
        • Borowski K.
        • et al.
        Standardized method for the detection of antibodies to aquaporin-4 based on a highly sensitive immunofluorescence assay employing recombinant target antigen.
        J. Neurol. Sci. 2010; 291 (2010/02/02): 52-56https://doi.org/10.1016/j.jns.2010.01.002
        • Reindl M.
        • Waters P.
        Myelin oligodendrocyte glycoprotein antibodies in neurological disease.
        Nat. Rev. Neurol. 2019; 15https://doi.org/10.1038/s41582-018-0112-x
        • Zamvil S.S.
        • Slavin A.J.
        Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder?.
        Neurol. Neuroimmunol. Neuroinflamm. 2015; 2 (2015/01/31): e62https://doi.org/10.1212/nxi.0000000000000062
        • Schmidt P.
        • Gaser C.
        • Arsic M.
        • et al.
        An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis.
        Neuroimage. 2012; 59: 3774-3783https://doi.org/10.1016/j.neuroimage.2011.11.032
      1. Schmidt P. Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging. Dissertation, LMU Munich, 2017.

        • Matthews L.
        • Marasco R.
        • Jenkinson M.
        • et al.
        Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution.
        Neurology. 2013; 80: 1330-1337https://doi.org/10.1212/WNL.0b013e3182887957
        • Zhang L.J.
        • Yang L.N.
        • Li T.
        • et al.
        Distinctive characteristics of early-onset and late-onset neuromyelitis optica spectrum disorders.
        Int. J. Neurosci. 2017; 127 (2016/10/30): 334-338https://doi.org/10.1080/00207454.2016.1254630
        • Collongues N.
        • Marignier R.
        • Jacob A.
        • et al.
        Characterization of neuromyelitis optica and neuromyelitis optica spectrum disorder patients with a late onset.
        Mult. Scler. 2014; 20 (2013/12/11): 1086-1094https://doi.org/10.1177/1352458513515085
        • Hinson S.R.
        • Roemer S.F.
        • Lucchinetti C.F.
        • et al.
        Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2.
        J. Exp. Med. 2008; 205 (2008/10/08): 2473-2481https://doi.org/10.1084/jem.20081241
        • Bradl M.
        • Kanamori Y.
        • Nakashima I.
        • et al.
        Pain in neuromyelitis optica–prevalence, pathogenesis and therapy.
        Nat. Rev. Neurol. 2014; 10 (2014/07/30): 529-536https://doi.org/10.1038/nrneurol.2014.129
        • Shahmohammadi S.
        • Doosti R.
        • Shahmohammadi A.
        • et al.
        Autoimmune diseases associated with neuromyelitis optica spectrum disorders: a literature review.
        Mult. Scler. Relat. Disord. 2019; 27: 350-363https://doi.org/10.1016/j.msard.2018.11.008
        • Wang X.
        • Shi Z.
        • Zhao Z.
        • et al.
        The causal relationship between neuromyelitis optica spectrum disorder and other autoimmune diseases.
        Front. Immunol. 2022; 13 (2022/10/18)959469https://doi.org/10.3389/fimmu.2022.959469
        • Lin L.
        • Hang H.
        • Zhang J.
        • et al.
        Clinical significance of anti-SSA/Ro antibody in Neuromyelitis optica spectrum disorders.
        Mult. Scler. Relat. Disord. 2022; 58 (2022/01/21)103494https://doi.org/10.1016/j.msard.2022.103494
        • Rasmussen M.K.
        • Mestre H.
        • Nedergaard M.
        The glymphatic pathway in neurological disorders.
        Lancet Neurol. 2018; 17: 1016-1024https://doi.org/10.1016/S1474-4422(18)30318-1
        • Simon M.
        • Wang M.X.
        • Ismail O.
        • et al.
        Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice.
        Alzheimers Res. Ther. 2022; 14: 59https://doi.org/10.1186/s13195-022-00999-5
        • Song Y.
        • Pan L.
        • Fu Y.
        • et al.
        Sleep abnormality in neuromyelitis optica spectrum disorder.
        Neurol. Neuroimmunol. Neuroinflamm. 2015; 2https://doi.org/10.1212/nxi.0000000000000094
        • Walker A.K.
        • Kavelaars A.
        • Heijnen C.J.
        • et al.
        Neuroinflammation and comorbidity of pain and depression.
        Pharmacol. Rev. 2014; 66 (2013/12/18): 80-101https://doi.org/10.1124/pr.113.008144
        • Liu Y.
        • Jiang X.
        • Butzkueven H.
        • et al.
        Multimodal characterization of gray matter alterations in neuromyelitis optica.
        Mult. Scler. 2018; 24 (2017/07/26): 1308-1316https://doi.org/10.1177/1352458517721053
        • Habes M.
        • Erus G.
        • Toledo J.B.
        • et al.
        White matter hyperintensities and imaging patterns of brain ageing in the general population.
        Brain J. Neurol. 2016; 139: 1164-1179https://doi.org/10.1093/brain/aww008
        • Wardlaw J.M.
        • Valdés Hernández M.C.
        • Muñoz-Maniega S.
        What are white matter hyperintensities made of? Relevance to vascular cognitive impairment.
        J. Am. Heart Assoc. 2015; 4 (2015/06/25)001140https://doi.org/10.1161/jaha.114.001140
        • Gouw A.A.
        • Seewann A.
        • van der Flier W.M.
        • et al.
        Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations.
        J. Neurol. Neurosurg. Psychiatry. 2011; 82: 126-135https://doi.org/10.1136/jnnp.2009.204685
        • Carnero Contentti E.
        • Correale J.
        Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies.
        J. Neuroinflamm. 2021; 18 (2021/09/18): 208https://doi.org/10.1186/s12974-021-02249-1
        • Hu H.Y.
        • Ou Y.N.
        • Shen X.N.
        • et al.
        White matter hyperintensities and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 36 prospective studies.
        Neurosci. Biobehav. Rev. 2021; 120: 16-27https://doi.org/10.1016/j.neubiorev.2020.11.007
        • Jeong S.H.
        • Lee H.S.
        • Jung J.H.
        • et al.
        White matter hyperintensities, dopamine loss, and motor deficits in De Novo Parkinson's disease.
        Mov. Disord. 2021; 36 (2021/01/30): 1411-1419https://doi.org/10.1002/mds.28510
        • Yaffe K.
        • Nasrallah I.
        • Hoang T.D.
        • et al.
        Sleep duration and white matter quality in middle-aged adults.
        Sleep. 2016; 39 (2016/07/12): 1743-1747https://doi.org/10.5665/sleep.6104
        • Ayzenberg I.
        • Richter D.
        • Henke E.
        • et al.
        Pain, depression, and quality of life in neuromyelitis optica spectrum disorder: a cross-sectional study of 166 AQP4 antibody-seropositive patients.
        Neurol. Neuroimmunol. Neuroinflamm. 2021; (8 2021/06/11)https://doi.org/10.1212/nxi.0000000000000985
        • Mealy M.A.
        • Kozachik S.L.
        • Levy M.
        Review of treatment for central spinal neuropathic pain and its effect on quality of life: implications for neuromyelitis optica spectrum disorder.
        Pain Manag. Nurs. 2019; 20 (2019/05/20): 580-591https://doi.org/10.1016/j.pmn.2019.03.003