Advertisement
Original article| Volume 70, 104471, February 2023

Effect of Carvacrol on histological analysis and expression of genes involved in an animal model of multiple sclerosis

Published:December 16, 2022DOI:https://doi.org/10.1016/j.msard.2022.104471

      Abstract

      Background

      The most common non-traumatic neurological disease in young- and middle-aged adults is multiple sclerosis (MS), leading to central nervous system (CNS) atrophy and neurological disorders with loss of myelin and axonal degeneration. Due to the inadequate efficiency of common treatments, some natural products with antioxidant properties such as Carvacrol have been considered.

      Objective

      the present study aimed to investigate carvacrol's anti-inflammatory and therapeutic effects on MS symptoms in healthy and experimental autoimmune encephalomyelitis (EAE) induced female Lewis rats.

      Methods

      The study was performed in three groups of Lewis rats: control group, EAE model, and EAE treated with carvacrol (carvacrol-treated group). The treatment group received 25 mg/kg of carvacrol intraperitoneally daily. Histologic examination and expression analysis of pro-inflammatory genes (Interleukin-1 and 17 (IL-1 and IL-17), Nuclear Factor Kappa B Cells (NF-κB) and Tumor Necrosis Factor-α (TNF-α)), myelin repair, and also regeneration genes (Myelin basic protein (MBP), Oligodendrocyte Transcription Factor 2 (OLIG2) and Platelet-Derived Growth Factor Receptor α (PDGFR-α)) were carried out. Gene studies, Hematoxylin and Eosin (H&E), and Luxol fast blue stain were performed in the lumbar region of the spinal cord.

      Results

      The EAE clinical scores in the carvacrol-treated group were lower than in untreated rats (P < 0.001). The expression of two genes, IL-17 and MBP, was confirmed using fluorescence immunohistochemistry (FIHC). A significant decrease was observed in NF-κB and IL-17, and IL-1 gene expression. The MBP and OLIG2 gene expression was increased in the carvacrol-treated group (p < 0.001). In EAE, PDGFR-α expression increased about four times. However, carvacrol administration did not affect PDGFR-α and TNF-α gene expression. In this treatment, H&E staining of spinal cord regions showed a significant decrease in inflammatory cell infiltration. Moreover, immunostaining analysis demonstrated a considerable increase in MBP and a reduction in IL-17 secretion.

      Conclusion

      The results showed that carvacrol administration reduces the entry of inflammatory cells into the CNS by stimulating myelination-related processes employing increasing the expression of genes involved in myelin repair and reducing the expression of inflammatory genes. Our findings confirm that carvacrol improves the clinical and pathological symptoms of EAE through its therapeutic and modification properties as a potential adjunctive therapy and needs to be studied more.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ahmadi M.
        • Eidi A.
        • Ahmadvand H.
        • Khaksarian M.
        • Sotoodehnejadnematalahi F.
        Effect of carvacrol on the expression of IL-10, FOX-P3, IL-4 and TGF-β genes in the spinal cord of rats model of Multiple Sclerosis.
        Iran. J. Biol. Sci. 2020; 15 (20.1001.1.17354226.1399.15.2.6.4): 53-61
        • Arima Y.
        • Harada M.
        • Kamimura D.
        • Park J.H.
        • Kawano F.
        • Yull F.E.
        • Kawamoto T.
        • Iwakura Y.
        • Betz U.A.
        • Márquez G.
        Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier.
        Cell. 2012; 148: 447-457https://doi.org/10.1016/j.cell.2012.01.022
        • Aristatile B.
        • Al-Assaf A.H.
        • Pugalendi K.V.
        Carvacrol suppresses the expression of inflammatory marker genes in d-galactosamine-hepatotoxic rats.
        Asian Pac. J. Trop. Med. 2013; 6: 205-211https://doi.org/10.1016/S1995-7645(13)60024-3
        • Aristatile B.
        • Al-Numair K.S.
        • Al-Assaf A.H.
        • Veeramani C.
        • Pugalendi K.V.
        Protective effect of carvacrol on oxidative stress and cellular DNA damage induced by UVB irradiation in human peripheral lymphocytes.
        J. Biochem. Mol. Toxicol. 2015; 29: 497-507https://doi.org/10.1002/jbt.20355
        • Arnett H.A.
        • Mason J.
        • Marino M.
        • Suzuki K.
        • Matsushima G.K.
        • Ting J.P.Y.
        TNFα promotes proliferation of oligodendrocyte progenitors and remyelination.
        Nat. Neurosci. 2001; 4: 1116-1122https://doi.org/10.1038/nn738
        • Baluchnejadmojarad T.
        • Roghani M.
        The protective effect of carvacrol on kainic acid-induced model of temporal lobe epilepsy in male rat.
        J. Basic Clin. Pathophysiol. 2016; 4: 11-16https://doi.org/10.22070/JBCP.2016.367
        • Bauthman M.S.
        Effectiveness of anti-cluster of differentiation 20 as a disease-modifying therapy in multiple sclerosis across its different phenotypes at the University Hospital of Caen.
        Cureus. 2022; 14https://doi.org/10.7759/cureus.22120
        • Beeton C.
        • Garcia A.
        • Chandy K.G.
        Induction and clinical scoring of chronic-relapsing experimental autoimmune encephalomyelitis.
        JoVE J. Vis. Exp. 2007; : e224https://doi.org/10.3791/224
        • Bhattacharya A.
        • Mishra R.
        • Tiwari P.
        Multiple sclerosis: an overview.
        Asian Pac. J. Trop. Biomed. 2012; 2 (S1954-S1962)https://doi.org/10.1016/S2221-1691(12)60525-5
        • Bittner S.
        • Afzali A.M.
        • Wiendl H.
        • Meuth S.G.
        Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice.
        JoVE J. Vis. Exp. 2014; : e51275https://doi.org/10.3791/51275
        • Constantinescu C.S.
        • Farooqi N.
        • O'Brien K.
        • Gran B.
        Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS).
        Br. J. Pharmacol. 2011; 164: 1079-1106https://doi.org/10.1111/j.1476-5381.2011.01302.x
        • Czepiel M.
        • Boddeke E.
        • Copray S.
        Human oligodendrocytes in remyelination research.
        Glia. 2015; 63: 513-530https://doi.org/10.1002/glia.22769
        • Gholijani N.
        • Amirghofran Z.
        Effects of thymol and carvacrol on T-helper cell subset cytokines and their main transcription factors in ovalbumin-immunized mice.
        J. Immunotoxicol. 2016; 13: 729-737https://doi.org/10.3109/1547691x.2016.1173134
        • Glatigny S.
        • Bettelli E.
        Experimental autoimmune encephalomyelitis (EAE) as animal models of multiple sclerosis (MS).
        Cold Spring Harb. Perspect. Med. 2018; 8 (a028977. 10.1101%2Fcshperspect.a028977)
        • Gold R.
        • Linington C.
        • Lassmann H.
        Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research.
        Brain. 2006; 129: 1953-1971https://doi.org/10.1093/brain/awl075
        • Göttle P.
        • Küry P.
        Intracellular protein shuttling: a mechanism relevant for myelin repair in multiple sclerosis?.
        Int. J. Mol. Sci. 2015; 16: 15057-15085https://doi.org/10.3390/ijms160715057
        • Haddadi H.
        • Rajaei Z.
        • Alaei H.
        • Shahidani S.
        Chronic treatment with carvacrol improves passive avoidance memory in a rat model of Parkinson's disease.
        Arq. Neuropsiquiatr. 2018; 76: 71-77https://doi.org/10.1590/0004-282x20170193
        • Javed H.
        • Meeran M.F.N.
        • Jha N.K.
        • Ojha S.
        Carvacrol, a plant metabolite targeting viral protease (Mpro) and ACE2 in host cells can be a possible candidate for COVID-19.
        Front. Plant Sci. 2021; (2237)https://doi.org/10.3389/fpls.2020.601335
        • Jones J.
        • Causey C.
        • Knuckley B.
        • Slack-Noyes J.L.
        • Thompson P.R.
        Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential. Current opinion in drug.
        Discov. Dev. 2009; 12: 616
        • Kamali-Sarvestani E.
        • Nikseresht A.
        • Aflaki E.
        • Sarvari J.
        • Gharesi-Fard B.
        TNF-α, TNF-β and IL-4 gene polymorphisms in Iranian patients with multiple sclerosis.
        Acta Neurol. Scand. 2007; 115: 161-166https://doi.org/10.1111/j.1600-0404.2006.00743.x
        • Kara M.
        • Uslu S.
        • Demirci F.
        • Temel H.E.
        • Baydemir C.
        Supplemental carvacrol can reduce the severity of inflammation by influencing the production of mediators of inflammation.
        Inflammation. 2015; 38: 1020-1027https://doi.org/10.1007/s10753-014-0066-0
        • Kemanetzoglou E.
        • Andreadou E.
        CNS demyelination with TNF-α blockers.
        Curr. Neurol. Neurosci. Rep. 2017; 17: 1-15https://doi.org/10.1007/s11910-017-0742-1
        • Kircik L.H.
        • Del Rosso J.Q.
        Anti-TNF agents for the treatment of psoriasis.
        J. Drugs Dermatol. 2009; 8: 546-559
        • Kotter M.R.
        • Stadelmann C.
        • Hartung H.P.
        Enhancing remyelination in disease—Can we wrap it up?.
        Brain. 2011; 134: 1882-1900https://doi.org/10.1093/brain/awr014
        • Larochelle C.
        • Alvarez J.I.
        • Prat A.
        How do immune cells overcome the blood–brain barrier in multiple sclerosis?.
        FEBS Lett. 2011; 585: 3770-3780https://doi.org/10.1016/j.febslet.2011.04.066
        • Lu K.
        • Liu L.
        • Xu X.
        • Zhao F.
        • Deng J.
        • Tang X.
        • Wang X.
        • Zhao B.Q.
        • Zhang X.
        • Zhao Y.
        ADAMTS13 ameliorates inflammatory responses in experimental autoimmune encephalomyelitis.
        J. Neuroinflammation. 2020; 17: 1-13https://doi.org/10.1186/s12974-020-1713-z
        • Mackay I.R.
        • Rose N.R.
        The Autoimmune Diseases.
        Elsevier Inc, 2013https://doi.org/10.1016/j.lfs.2018.11.051
        • Mahmoodi M.
        • Amiri H.
        • Ayoobi F.
        • Rahmani M.
        • Taghipour Z.
        • Ghavamabadi R.T.
        • Jafarzadeh A.
        • Sankian M.
        Carvacrol ameliorates experimental autoimmune encephalomyelitis through modulating pro-and anti-inflammatory cytokines.
        Life Sci. 2019; 219: 257-263https://doi.org/10.1016/j.lfs.2018.11.051
        • McGinley A.M.
        • Sutton C.E.
        • Edwards S.C.
        • Leane C.M.
        • DeCourcey J.
        • Teijeiro A.
        • Hamilton J.A.
        • Boon L.
        • Djouder N.
        • Mills K.H.
        Interleukin-17A serves a priming role in autoimmunity by recruiting IL-1β-producing myeloid cells that promote pathogenic T cells.
        Immunity. 2020; 52 (e346): 342-356https://doi.org/10.1016/j.immuni.2020.01.002
        • Michalickova D.
        • Kramarikova I.
        • Ozturk H.K.
        • Kucera T.
        • Vacik T.
        • Hrncir T.
        • Kutinova Canova N.
        • Sima M.
        • Slanar O.
        Detection of Galanin Receptors in the Spinal Cord in Experimental Autoimmune Encephalomyelitis.
        Biomedical Papers of the Medical Faculty of the University Palacky, 2022https://doi.org/10.5507/bp.2022.005
        • Noyes K.
        • Bajorska A.
        • Chappel A.
        • Schwid S.
        • Mehta L.
        • Weinstock-Guttman B.
        • Holloway R.
        • Dick A.
        Cost-effectiveness of disease-modifying therapy for multiple sclerosis: a population-based study.
        Neurology. 2011; 77: 355-363https://doi.org/10.1212/WNL.0b013e3182270402
        • Raphael I.
        • Nalawade S.
        • Eagar T.N.
        • Forsthuber T.G.
        T cell subsets and their signature cytokines in autoimmune and inflammatory diseases.
        Cytokine. 2015; 74: 5-17https://doi.org/10.1016/j.cyto.2014.09.011
        • Rivera F.J.
        • Aigner L.
        Adult mesenchymal stem cell therapy for myelin repair in multiple sclerosis.
        Biol. Res. 2012; 45: 257-268https://doi.org/10.4067/S0716-97602012000300007
        • Shakhbazau A.
        • Schenk G.J.
        • Hay C.
        • Kawasoe J.
        • Klaver R.
        • Yong V.W.
        • Geurts J.J.
        • van Minnen J.
        Demyelination induces transport of ribosome-containing vesicles from glia to axons: evidence from animal models and MS patient brains.
        Mol. Biol. Rep. 2016; 43: 495-507https://doi.org/10.1007/s11033-016-3990-2
        • Sutton C.
        • Brereton C.
        • Keogh B.
        • Mills K.H.
        • Lavelle E.C.
        A crucial role for interleukin (IL)-1 in the induction of IL-17–producing T cells that mediate autoimmune encephalomyelitis.
        J. Exp. Med. 2006; 203: 1685-1691https://doi.org/10.1084/jem.20060285
        • Vigne S.
        • Duc D.
        • Peter B.
        • Rebeaud J.
        • Yersin Y.
        • Ruiz F.
        • Bressoud V.
        • Collet T.H.
        • Pot C.
        Lowering blood cholesterol does not affect neuroinflammation in experimental autoimmune encephalomyelitis.
        J. Neuroinflammation. 2022; 19: 1-12https://doi.org/10.1186/s12974-022-02409
        • Wegener A.
        • Deboux C.
        • Bachelin C.
        • Frah M.
        • Kerninon C.
        • Seilhean D.
        • Weider M.
        • Wegner M.
        • Nait-Oumesmar B.
        Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination.
        Brain. 2015; 138: 120-135https://doi.org/10.1093/brain/awu375
        • Yang T.
        • Zheng Q.
        • Wang S.
        • Fang L.
        • Liu L.
        • Zhao H.
        • Wang L.
        • Fan Y.
        Effect of catalpol on remyelination through experimental autoimmune encephalomyelitis acting to promote Olig1 and Olig2 expressions in mice.
        BMC Complement. Altern. Med. 2017; 17: 1-15https://doi.org/10.1080/22221751.2020.1764871
        • Yuan L.
        • Tang Q.
        • Cheng T.
        • Xia N.
        Animal models for emerging coronavirus: progress and new insights.
        Emerg. Microbes Infect. 2020; 9: 949-961https://doi.org/10.1080/22221751.2020.1764871
        • Zhu Q.
        • Zhao X.
        • Zheng K.
        • Li H.
        • Huang H.
        • Zhang Z.
        • Mastracci T.
        • Wegner M.
        • Chen Y.
        • Sussel L.
        Genetic evidence that Nkx2. 2 and Pdgfra are major determinants of the timing of oligodendrocyte differentiation in the developing CNS.
        Development. 2014; 141: 548-555https://doi.org/10.1242/dev.095323