Advertisement

Stages of brain volume loss and performance in the Brief International Cognitive Assessment for Multiple Sclerosis

Published:September 12, 2022DOI:https://doi.org/10.1016/j.msard.2022.104183

      Highlights

      • We analyzed the associations of brain volume loss and cognitive function in MS.
      • Cluster analysis based on brain volume data identified three patient clusters.
      • The SDMT and BVMTR scores decreased in line with the brain volume loss.
      • The CVLT2 was impaired predominantly in the cluster with severe brain volume loss.

      Abstract

      Background

      Cognitive dysfunction occurs in a substantial proportion of patients with multiple sclerosis (MS), negatively affects their daily activities, and is associated with poor prognosis. Cognitive dysfunction in MS can extend across multiple cognitive domains, depending on the patterns and extent of the brain regions affected. Therefore, a combination of tests, including the Brief International Cognitive Assessment for MS (BICAMS), that assess different aspects of cognition is recommended to capture the full picture of cognitive impairment in each patient. However, the temporal relationships between the progression of the MS brain pathology and the performances in different cognitive tests remain unclear.

      Methods

      Global and regional brain volume data were obtained based on T1-weighted magnetic resonance imaging from 61 patients with MS, and hierarchical cluster analysis was performed using these brain volume data. Cognitive function was assessed using the three subcomponents of the BICAMS: the Symbol Digit Modalities Test (SDMT), California Verbal Learning Test Second Edition (CVLT2), and Brief Visuospatial Memory Test-Revised (BVMTR). Clinical characteristics, patterns of regional brain volume loss, and cognitive test scores were compared among clusters.

      Results

      Cluster analysis of the global and regional brain volume data classified patients into three clusters (Clusters 1, 2, and 3) in order of decreasing global brain volume. A comparison of the clinical profiles of the patients suggested that those in Clusters 1, 2, and 3 are in the early, intermediate, and advanced stages of MS, respectively. Pair-wise analysis of regional brain volume among the three clusters suggested brain regions where volume loss starts early and continues throughout the disease course, occurs preferentially at the early phase, or evolves relatively slowly. SDMT scores differed significantly among the three clusters, with a decrease from Clusters 1 to 3. BVMTR scores also declined in this order, whereas the CVLT2 was significantly impaired only in Cluster 3.

      Conclusion

      Our results suggest that SDMT performance declines in conjunction with brain volume loss throughout the disease course of MS. Performance in the BVMTR also declines in line with the brain volume loss, but impairment in the CVLT2 becomes particularly apparent at the late phase of MS.

      Keywords

      Abbreviations:

      BICAMS (Brief International Cognitive Assessment for Multiple Sclerosis), BVMTR (Brief Visuospatial Memory Test-Revised), CVLT2 (California Verbal Learning Test Second Edition), EDSS (Expanded Disability Status Scale), MRI (magnetic resonance imaging), MS (multiple sclerosis), SDMT (Symbol Digit Modalities Test)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amato M.P.
        • Portaccio E.
        • Goretti B.
        • Zipoli V.
        • Iudice A.
        • Pina D.D.
        • Malentacchi G.
        • Sabatini S.
        • Annunziata P.
        • Falcini M.
        • Mazzoni M.
        • Mortilla M.
        • Fonda C.
        • Stefano N.D.
        • Group T.S.
        Relevance of cognitive deterioration in early relapsing-remitting MS: a 3-year follow-up study.
        Mult. Scler. 2010; 16: 1474-1482https://doi.org/10.1177/1352458510380089
        • Aslaksen P.M.
        • Bystad M.K.
        • Ørbo M.C.
        • Vangberg T.R.
        The relation of hippocampal subfield volumes to verbal episodic memory measured by the California Verbal Learning Test II in healthy adults.
        Behav. Brain. Res. 2018; 351: 131-137https://doi.org/10.1016/j.bbr.2018.06.008
        • Azevedo C.J.
        • Cen S.Y.
        • Jaberzadeh A.
        • Zheng L.
        • Hauser S.L.
        • Pelletier D.
        Contribution of normal aging to brain atrophy in MS.
        Neurol. Neuroimmunol. Neuroinflam. 2019; 6: e616https://doi.org/10.1212/nxi.0000000000000616
        • Azevedo C.J.
        • Overton E.
        • Khadka S.
        • Buckley J.
        • Liu S.
        • Sampat M.
        • Kantarci O.
        • Frenay C.L.
        • Siva A.
        • Okuda D.T.
        • Pelletier D.
        Early CNS neurodegeneration in radiologically isolated syndrome.
        Neurol. Neuroimmunol. Neuroinflam. 2015; 2: e102https://doi.org/10.1212/nxi.0000000000000102
        • Benedict R.H.B.
        • Amato M.P.
        • DeLuca J.
        • Geurts J.J.G.
        Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues.
        Lancet Neurol. 2020; 19: 860-871https://doi.org/10.1016/s1474-4422(20)30277-5
        • Benedict R.H.B.
        • Ramasamy D.
        • Munschauer F.
        • Weinstock-Guttman B.
        • Zivadinov R.
        Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy.
        J. Neurol. Neurosurg. Psychiatry. 2009; 80: 201https://doi.org/10.1136/jnnp.2008.148403
        • Bergsland N.
        • Benedict R.H.B.
        • Dwyer M.G.
        • Fuchs T.A.
        • Jakimovski D.
        • Schweser F.
        • Tavazzi E.
        • Weinstock-Guttman B.
        • Zivadinov R.
        Thalamic nuclei volumes and their relationships to neuroperformance in multiple sclerosis: A cross-sectional structural MRI study.
        J. Magn. Reson. Imaging. 2021; 53: 731-739https://doi.org/10.1002/jmri.27389
        • Bisecco A.
        • Stamenova S.
        • Caiazzo G.
        • d'Ambrosio A.
        • Sacco R.
        • Docimo R.
        • Esposito S.
        • Cirillo M.
        • Esposito F.
        • Bonavita S.
        • Tedeschi G.
        • Gallo A.
        Attention and processing speed performance in multiple sclerosis is mostly related to thalamic volume.
        Brain. Imaging. Behav. 2018; 12: 20-28https://doi.org/10.1007/s11682-016-9667-6
        • Bonner-Jackson A.
        • Mahmoud S.
        • Miller J.
        • Banks S.J.
        Verbal and non-verbal memory and hippocampal volumes in a memory clinic population. Alzheimer's.
        Res. Ther. 2015; 7: 61https://doi.org/10.1186/s13195-015-0147-9
        • Brochet B.
        • Ruet A.
        Cognitive impairment in multiple sclerosis with regards to disease duration and clinical phenotypes.
        Front. Neurol. 2019; 10: 261https://doi.org/10.3389/fneur.2019.00261
        • Cao B.
        • Passos I.C.
        • Mwangi B.
        • Bauer I.E.
        • Zunta-Soares G.B.
        • Kapczinski F.
        • Soares J.C.
        Hippocampal volume and verbal memory performance in late-stage bipolar disorder.
        J. Psychiatr. Res. 2016; 73: 102-107https://doi.org/10.1016/j.jpsychires.2015.12.012
        • Cocozza S.
        • Petracca M.
        • Mormina E.
        • Buyukturkoglu K.
        • Podranski K.
        • Heinig M.M.
        • Pontillo G.
        • Russo C.
        • Tedeschi E.
        • Russo C.V.
        • Costabile T.
        • Lanzillo R.
        • Harel A.
        • Klineova S.
        • Miller A.
        • Brunetti A.
        • Morra V.B.
        • Lublin F.
        • Inglese M.
        Cerebellar lobule atrophy and disability in progressive MS.
        J. Neurol. Neurosurg. Psychiatry. 2017; 88: 1065https://doi.org/10.1136/jnnp-2017-316448
        • Conway D.S.
        • Planchon S.M.
        • Oh S.H.
        • Nakamura K.
        • Thompson N.R.
        • Sakaie K.
        • Ontaneda D.
        Measures of thalamic integrity are associated with cognitive functioning in fingolimod-treated multiple sclerosis patients.
        Mult. Scler. Relat. Dis. 2021; 47102635https://doi.org/10.1016/j.msard.2020.102635
        • Davion J.-B.
        • Lopes R.
        • Jougleux C.
        • Viard R.
        • Dumont J.
        • Leclerc X.
        • Outteryck O.
        Brief International Cognitive Assessment for Multiple Sclerosis scores are associated with the cortical thickness of specific cortical areas in relapsing-remitting patients.
        Rev. Neurol. 2021; https://doi.org/10.1016/j.neurol.2021.06.014
        • De Meo E.
        • Portaccio E.
        • Giorgio A.
        • Ruano L.
        • Goretti B.
        • Niccolai C.
        • Patti F.
        • Chisari C.G.
        • Gallo P.
        • Grossi P.
        • Ghezzi A.
        • Roscio M.
        • Mattioli F.
        • Stampatori C.
        • Simone M.
        • Viterbo R.G.
        • Bonacchi R.
        • Rocca M.A.
        • Stefano N.D.
        • Filippi M.
        • Amato M.P.
        • Ermelinda
        Identifying the distinct cognitive phenotypes in multiple sclerosis.
        JAMA Neurol. 2021; 78: 414-425https://doi.org/10.1001/jamaneurol.2020.4920
        • Duran T.
        • Woo E.
        • Otero D.
        • Risacher S.L.
        • Stage E.
        • Sanjay A.B.
        • Nho K.
        • West J.D.
        • Phillips M.L.
        • Goukasian N.
        • Hwang K.S.
        • Apostolova L.G.
        Associations between cortical thickness and metamemory in Alzheimer's disease.
        Brain. Imaging. Behav. Online Ahead Print. 2022; https://doi.org/10.1007/s11682-021-00627-0
        • Eshaghi A.
        • Marinescu R.V.
        • Young A.L.
        • Firth N.C.
        • Prados F.
        • Cardoso M.J.
        • Tur C.
        • Angelis F.D.
        • Cawley N.
        • Brownlee W.J.
        • Stefano N.D.
        • Stromillo M.L.
        • Battaglini M.
        • Ruggieri S.
        • Gasperini C.
        • Filippi M.
        • Rocca M.A.
        • Rovira A.
        • Sastre-Garriga J.
        • Geurts J.J.G.
        • Vrenken H.
        • Wottschel V.
        • Leurs C.E.
        • Uitdehaag B.
        • Pirpamer L.
        • Enzinger C.
        • Ourselin S.
        • Wheeler-Kingshott C.A.G.
        • Chard D.
        • Thompson A.J.
        • Barkhof F.
        • Alexander D.C.
        • Ciccarelli O.
        Progression of regional grey matter atrophy in multiple sclerosis.
        Brain. 2018; 141: 1665-1677https://doi.org/10.1093/brain/awy088
        • Eshaghi A.
        • Young A.L.
        • Wijeratne P.A.
        • Prados F.
        • Arnold D.L.
        • Narayanan S.
        • Guttmann C.R.G.
        • Barkhof F.
        • Alexander D.C.
        • Thompson A.J.
        • Chard D.
        • Ciccarelli O.
        Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data.
        Nat. Commun. 2021; 12: 2078https://doi.org/10.1038/s41467-021-22265-2
        • Fischl B.
        • Dale A.M.
        Measuring the thickness of the human cerebral cortex from magnetic resonance images.
        Proc. Natl. Acad. Sci. 2000; 97: 11050-11055https://doi.org/10.1073/pnas.200033797
        • Fujimori J.
        • Fujihara K.
        • Ogawa R.
        • Baba T.
        • Wattjes M.
        • Nakashima I.
        Patterns of regional brain volume loss in multiple sclerosis: a cluster analysis.
        J. Neurol. 2020; 267: 395-405https://doi.org/10.1007/s00415-019-09595-4
        • Henry R.G.
        • Shieh M.
        • Okuda D.T.
        • Evangelista A.
        • Gorno-Tempini M.L.
        • Pelletier D.
        Regional grey matter atrophy in clinically isolated syndromes at presentation.
        J. Neurol. Neurosurg. Psychiatry. 2008; 79: 1236https://doi.org/10.1136/jnnp.2007.134825
        • Huang Y.
        • Huang L.
        • Wang Y.
        • Liu Y.
        • Lo C.-Y.Z.
        • Guo Q.
        Differential associations of visual memory with hippocampal subfields in subjective cognitive decline and amnestic mild cognitive impairment.
        BMC Geriatr. 2022; 22: 153https://doi.org/10.1186/s12877-022-02853-7
        • Kalb R.
        • Beier M.
        • Benedict R.H.
        • Charvet L.
        • Costello K.
        • Feinstein A.
        • Gingold J.
        • Goverover Y.
        • Halper J.
        • Harris C.
        • Kostich L.
        • Krupp L.
        • Lathi E.
        • LaRocca N.
        • Thrower B.
        • DeLuca J.
        Recommendations for cognitive screening and management in multiple sclerosis care.
        Mult. Scler. 2018; 24: 1665-1680https://doi.org/10.1177/1352458518803785
        • Koenig K.A.
        • Rao S.M.
        • Lowe M.J.
        • Lin J.
        • Sakaie K.E.
        • Stone L.
        • Bermel R.A.
        • Trapp B.D.
        • Phillips M.D.
        The role of the thalamus and hippocampus in episodic memory performance in patients with multiple sclerosis.
        Mult. Scler. 2018; 25: 574-584https://doi.org/10.1177/1352458518760716
        • Langdon D.
        • Amato M.
        • Boringa J.
        • Brochet B.
        • Foley F.
        • Fredrikson S.
        • Hämäläinen P.
        • Hartung H.-P.
        • Krupp L.
        • Penner I.
        • Reder A.
        • Benedict R.
        Recommendations for a brief international cognitive assessment for multiple sclerosis (BICAMS).
        Mult. Scler. 2012; 18: 891-898https://doi.org/10.1177/1352458511431076
        • Langdon D.W.
        Cognition in multiple sclerosis.
        Curr. Opin. Neurol. 2011; 24: 244-249https://doi.org/10.1097/wco.0b013e328346a43b
        • Lorefice L.
        • Carta E.
        • Frau J.
        • Contu F.
        • Casaglia E.
        • Coghe G.
        • Barracciu M.A.
        • Cocco E.
        • Fenu G.
        The impact of deep grey matter volume on cognition in multiple sclerosis.
        Mult. Scler. Relat. Dis. 2020; 45102351https://doi.org/10.1016/j.msard.2020.102351
        • McIntosh E.C.
        • Jacobson A.
        • Kemmotsu N.
        • Pongpipat E.
        • Green E.
        • Haase L.
        • Murphy C.
        Does medial temporal lobe thickness mediate the association between risk factor burden and memory performance in middle-aged or older adults with metabolic syndrome?.
        Neurosci. Lett. 2017; 636: 225-232https://doi.org/10.1016/j.neulet.2016.10.010
        • Mesaros S.
        • Rocca M.A.
        • Absinta M.
        • Ghezzi A.
        • Milani N.
        • Moiola L.
        • Veggiotti P.
        • Comi G.
        • Filippi M.
        Evidence of thalamic gray matter loss in pediatric multiple sclerosis.
        Neurology. 2008; 70: 1107-1112https://doi.org/10.1212/01.wnl.0000291010.54692.85
        • Niino M.
        • Fukazawa T.
        • Kira J.
        • Okuno T.
        • Mori M.
        • Sanjo N.
        • Ohashi T.
        • Fukaura H.
        • Fujimori J.
        • Shimizu Y.
        • Mifune N.
        • Miyazaki Y.
        • Takahashi E.
        • Kikuchi S.
        • Langdon D.
        • Benedict R.H.
        • Matsui M.
        Validation of the Brief International Cognitive Assessment for Multiple Sclerosis in Japan.
        Mult. Scler. J. Exp. Transl. Clin. 2017; 32055217317748972https://doi.org/10.1177/2055217317748972
        • Noh Y.
        • Jeon S.
        • Lee J.M.
        • Seo S.W.
        • Kim G.H.
        • Cho H.
        • Ye B.S.
        • Yoon C.W.
        • Kim H.J.
        • Chin J.
        • Park K.H.
        • Heilman K.M.
        • Na D.L.
        Anatomical heterogeneity of Alzheimer disease.
        Neurology. 2014; 83: 1936-1944https://doi.org/10.1212/wnl.0000000000001003
        • Ontaneda D.
        • Raza P.C.
        • Mahajan K.R.
        • Arnold D.L.
        • Dwyer M.G.
        • Gauthier S.A.
        • Greve D.N.
        • Harrison D.M.
        • Henry R.G.
        • Li D.K.B.
        • Mainero C.
        • Moore W.
        • Narayanan S.
        • Oh J.
        • Patel R.
        • Pelletier D.
        • Rauscher A.
        • Rooney W.D.
        • Sicotte N.L.
        • Tam R.
        • Reich D.S.
        • Azevedo C.J.
        Deep grey matter injury in multiple sclerosis: a NAIMS consensus statement.
        Brain. 2021; 144: 1974-1984https://doi.org/10.1093/brain/awab132
        • Parmenter B.A.
        • Weinstock-Guttman B.
        • Garg N.
        • Munschauer F.
        • Benedict R.H.
        Screening for cognitive impairment in multiple sclerosis using the Symbol Digit Modalities Test.
        Mult. Scler. 2007; 13: 52-57https://doi.org/10.1177/1352458506070750
        • Rao S.
        • Leo G.J.
        • Bernardin L.
        • Unverzagt F.
        Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction.
        Neurology. 1991; : 685-691
        • Rao S.
        • Leo G.
        • Ellington L.
        • Nauertz T.
        • Bernardin L.
        • Unverzagt F.
        Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning.
        Neurology. 1991; : 692-696
        • Riccitelli G.C.
        • Pagani E.
        • Rodegher M.
        • Colombo B.
        • Preziosa P.
        • Falini A.
        • Comi G.
        • Filippi M.
        • Rocca M.A.
        Imaging patterns of gray and white matter abnormalities associated with PASAT and SDMT performance in relapsing-remitting multiple sclerosis.
        Mult. Scler. 2017; 25: 204-216https://doi.org/10.1177/1352458517743091
        • Rotstein D.
        • Montalban X.
        Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis.
        Nat. Rev. Neurol. 2019; 15: 287-300https://doi.org/10.1038/s41582-019-0170-8
        • Sicotte N.L.
        • Kern K.C.
        • Giesser B.S.
        • Arshanapalli A.
        • Schultz A.
        • Montag M.
        • Wang H.
        • Bookheimer S.Y.
        Regional hippocampal atrophy in multiple sclerosis.
        Brain. 2008; 131: 1134-1141https://doi.org/10.1093/brain/awn030
        • Štecková T.
        • Hluštík P.
        • Sládková V.
        • Odstrčil F.
        • Mareš J.
        • Kaňovský P.
        Thalamic atrophy and cognitive impairment in clinically isolated syndrome and multiple sclerosis.
        J. Neurol. Sci. 2014; 342: 62-68https://doi.org/10.1016/j.jns.2014.04.026
        • Tao Y.
        • XueSong Z.
        • Xiao Y.
        • YueZhi K.
        • Xin W.
        • YanPing T.
        • Lei W.
        • YongPing F.
        Association between symbol digit modalities test and regional cortex thickness in young adults with relapsing-remitting multiple sclerosis.
        Clin. Neurol. Neurosurg. 2021; 207106805https://doi.org/10.1016/j.clineuro.2021.106805
        • Thompson A.J.
        • Banwell B.L.
        • Barkhof F.
        • Carroll W.M.
        • Coetzee T.
        • Comi G.
        • Correale J.
        • Fazekas F.
        • Filippi M.
        • Freedman M.S.
        • Fujihara K.
        • Galetta S.L.
        • Hartung H.P.
        • Kappos L.
        • Lublin F.D.
        • Marrie R.A.
        • Miller A.E.
        • Miller D.H.
        • Montalban X.
        • Mowry E.M.
        • Sorensen P.S.
        • Tintoré M.
        • Traboulsee A.L.
        • Trojano M.
        • Uitdehaag B.M.J.
        • Vukusic S.
        • Waubant E.
        • Weinshenker B.G.
        • Reingold S.C.
        • Cohen J.A.
        Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.
        Lancet Neurol. 2018; 17: 162-173https://doi.org/10.1016/s1474-4422(17)30470-2
        • Tringale K.R.
        • Nguyen T.T.
        • Karunamuni R.
        • Seibert T.
        • Huynh-Le M.-P.
        • Connor M.
        • Moiseenko V.
        • Gorman M.K.
        • Marshall A.
        • Tibbs M.D.
        • Farid N.
        • Simpson D.
        • Sanghvi P.
        • McDonald C.R.
        • Hattangadi-Gluth J.A.
        Quantitative imaging biomarkers of damage to critical memory regions are associated with post–radiation therapy memory performance in brain tumor patients.
        Int. J. Radiat. Oncol. Biology. Phys. 2019; 105: 773-783https://doi.org/10.1016/j.ijrobp.2019.08.003
        • Uribe C.
        • Segura B.
        • Baggio H.C.
        • Abos A.
        • Marti M.J.
        • Valldeoriola F.
        • Compta Y.
        • Bargallo N.
        • Junque C.
        Patterns of cortical thinning in nondemented Parkinson's disease patients.
        Mov. Disord. 2016; 31: 699-708https://doi.org/10.1002/mds.26590
        • Whitwell J.L.
        • Przybelski S.A.
        • Weigand S.D.
        • Ivnik R.J.
        • Vemuri P.
        • Gunter J.L.
        • Senjem M.L.
        • Shiung M.M.
        • Boeve B.F.
        • Knopman D.S.
        • Parisi J.E.
        • Dickson D.W.
        • Petersen R.C.
        • Jack C.R.
        • Josephs K.A.
        Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study.
        Brain. 2009; 132: 2932-2946https://doi.org/10.1093/brain/awp232
        • Wojcik C.
        • Fuchs T.A.
        • Tran H.
        • Dwyer M.G.
        • Jakimovski D.
        • Unverdi M.
        • Weinstock-Guttman B.
        • Zivadinov R.
        • Eshaghi A.
        • Benedict R.H.
        Staging and stratifying cognitive dysfunction in multiple sclerosis.
        Mult. Scler. 2021; 28: 463-471https://doi.org/10.1177/13524585211011390
        • Yokote H.
        • Okano K.
        • Toru S.
        Theory of mind and its neuroanatomical correlates in people with multiple sclerosis.
        Mult. Scler. Relat. Dis. 2021; 55103156https://doi.org/10.1016/j.msard.2021.103156
        • Zivadinov R.
        • Havrdová E.
        • Bergsland N.
        • Tyblova M.
        • Hagemeier J.
        • Seidl Z.
        • Dwyer M.G.
        • Vaneckova M.
        • Krasensky J.
        • Carl E.
        • Kalincik T.
        • Horáková D.
        Thalamic atrophy is associated with development of clinically definite multiple sclerosis.
        Radiology. 2013; 268: 831-841https://doi.org/10.1148/radiol.13122424