Gut microbiome in multiple sclerosis-related cognitive impairment

Published:September 07, 2022DOI:


      • Gut microbiome may alter neurotransmitters, immune system, and blood-brain barrier.
      • Shift in proinflammatory factors due to gut dysbiosis is shown in MS.
      • Gut flora may contribute to MS pathology by decreasing short-chain fatty acids.
      • As preliminary data shows, this interplay may lead to cognitive impairment in MS.


      Cognition is one of the most evaluated neurologic subjects with which the gut microbiome is supposed to be associated. Cognitive impairment is a prevalent finding in patients with multiple sclerosis (MS). Here, we are about to study the current evidence on the effect of gut microbiota on cognition and MS. Although no direct evidence is in hand, putting all indirect research together, one could think of the hypothetical benefit of brain-gut axis interventions (possibly diet changes, probiotic administration, microbiota transplant) to solve the drastic problem of cognitive impairment in MS. Hence, researchers are encouraged to scan this horizon in order to fill the knowledge gaps in the field.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Al-Ghezi Z.Z.
        • et al.
        Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome.
        Brain Behav. Immun. 2019; 82: 25-35
        • Angoorani P.
        • et al.
        Is there any link between cognitive impairment and gut microbiota?.
        Syst. Rev. Gerontol. 2022; Mar 9: 1-13
        • Ascherio A.
        Environmental factors in multiple sclerosis.
        Expert Rev. Neurother. 2013; 13 (Suppl): 3-9
        • Baldi S.
        • et al.
        Microbiota shaping - the effects of probiotics, prebiotics, and fecal microbiota transplant on cognitive functions: a systematic review.
        World J. Gastroenterol. 2021; 27: 6715-6732
        • Barrio C.
        • Arias-Sánchez S.
        • Martín-Monzón I.
        The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: a systematic review.
        Psychoneuroendocrinology. 2022; 137105640
        • Bates D.
        • et al.
        A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis.
        J. Neurol. Neurosurg. Psychiatry. 1989; 52: 18-22
        • Berer K.
        • et al.
        Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice.
        Proc. Natl. Acad. Sci. U. S. A. 2017; 114: 10719-10724
        • Blacher E.
        • et al.
        Microbiome-modulated metabolites at the interface of host immunity.
        J. Immunol. 2017; 198: 572-580
        • Bonnechere B.
        • Amin N.
        • van Duijn C.
        The role of gut microbiota in neuropsychiatric diseases - creation of an atlas-based on quantified evidence.
        Front. Cell Infect. Microbiol. 2022; 12831666
        • Bowling A.C.
        Complementary and alternative medicine in multiple sclerosis.
        Continuum. 2010; 16 (Minneap Minn)Multiple Sclerosis: 78-89
        • Brochet B.
        Cognitive rehabilitation in multiple sclerosis in the period from 2013 and 2021: a narrative review.
        Brain Sci. 2021; 12
        • Bruce-Keller A.J.
        • et al.
        Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity.
        Biol. Psychiatry. 2015; 77: 607-615
        • Cantarel B.L.
        • et al.
        Gut microbiota in multiple sclerosis: possible influence of immunomodulators.
        J. Investig. Med. 2015; 63: 729-734
        • Cattaneo A.
        • et al.
        Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly.
        Neurobiol. Aging. 2017; 49: 60-68
        • Cekanaviciute E.
        • et al.
        Gut dysbiosis is a feature of MS and it is characterized by bacteria able to regulate lymphocyte differentiation in vitro.
        Mult. Scler. 2016; 22: 58-59
        • Chen H.
        • et al.
        Fecal microbiota transplantation from patients with autoimmune encephalitis modulates Th17 response and relevant behaviors in mice.
        Cell Death Discov. 2020; 6: 75
        • Chen J.
        • et al.
        Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls.
        Sci. Rep. 2016; 6: 1-10
        • Chen T.
        • et al.
        Butyrate suppresses demyelination and enhances remyelination.
        J. Neuroinflamm. 2019; 16: 1-13
        • Chung H.
        • Kasper D.L.
        Microbiota-stimulated immune mechanisms to maintain gut homeostasis.
        Curr. Opin. Immunol. 2010; 22: 455-460
        • Ciernikova S.
        • Mego M.
        • Chovanec M.
        Exploring the potential role of the gut microbiome in chemotherapy-induced neurocognitive disorders and cardiovascular toxicity.
        Cancers. 2021; 13 (Basel): 782
        • Claesson M.J.
        • et al.
        Gut microbiota composition correlates with diet and health in the elderly.
        Nature. 2012; 488: 178-184
        • Compston A.
        • Coles A.
        Multiple sclerosis.
        Lancet. 2008; 372: 1502-1517
        • Costantino C.M.
        • Baecher-Allan C.
        • Hafler D.A.
        Multiple sclerosis and regulatory T cells.
        J. Clin. Immunol. 2008; 28: 697-706
        • Cox L.M.
        • et al.
        Gut microbiome in progressive multiple sclerosis.
        Ann. Neurol. 2021; 89: 1195-1211
        • Davion J.B.
        • et al.
        Brief International cognitive assessment for multiple sclerosis scores are associated with the cortical thickness of specific cortical areas in relapsing-remitting patients.
        Rev. Neurol. 2022; 178 (Paris): 326-336
        • Di Filippo M.
        • et al.
        Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis.
        Cell Rep. 2021; 37110094
        • Durelli L.
        • et al.
        T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-β.
        Ann. Neurol. 2009; 65 (Official Journal of the American Neurological Association and the Child Neurology Society): 499-509
        • Duscha A.
        • et al.
        Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism.
        Cell. 2020; 180 (e16): 1067-1080
        • Fawley J.
        • Gourlay D.M.
        Intestinal alkaline phosphatase: a summary of its role in clinical disease.
        J. Surg. Res. 2016; 202: 225-234
        • Fernandez-Real J.M.
        • et al.
        Gut microbiota interacts with brain microstructure and function.
        J. Clin. Endocrinol. Metab. 2015; 100: 4505-4513
        • Fung T.C.
        • Olson C.A.
        • Hsiao E.Y.
        Interactions between the microbiota, immune and nervous systems in health and disease.
        Nat. Neurosci. 2017; 20: 145-155
        • Furusawa Y.
        • et al.
        Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.
        Nature. 2013; 504: 446-450
        • Haghikia A.
        • et al.
        Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine.
        Immunity. 2015; 43: 817-829
        • Harach T.
        • et al.
        Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota.
        Sci. Rep. 2017; 7: 41802
        • Hassouneh R.
        • Bajaj J.S.
        Gut microbiota modulation and fecal transplantation: an overview on innovative strategies for hepatic encephalopathy treatment.
        J. Clin. Med. 2021; 10: 330
        • Hechenberger S.
        • et al.
        Information processing speed as a prognostic marker of physical impairment and progression in patients with multiple sclerosis.
        Mult. Scler. Relat. Disord. 2022; 57103353
        • Hedström A.K.
        • Olsson T.
        • Alfredsson L.
        High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women.
        Mult. Scler. 2012; 18: 1334-1336
        • Ho J.T.
        • Chan G.C.
        • Li J.C.
        Systemic effects of gut microbiota and its relationship with disease and modulation.
        BMC Immunol. 2015; 16: 1-6
        • Hooks K.B.
        • Konsman J.P.
        • O'Malley M.A.
        Microbiota-gut-brain research: a critical analysis.
        Behav. Brain Sci. 2018; 42: e60
        • Hu X.
        • Wang T.
        • Jin F.
        Alzheimer's disease and gut microbiota.
        Sci. China Life Sci. 2016; 59: 1006-1023
        • Ismail II
        • Saqr M.
        A quantitative synthesis of eight decades of global multiple sclerosis research using bibliometrics.
        Front. Neurol. 2022; 13845539
        • Jangi S.
        • et al.
        Alterations of the human gut microbiome in multiple sclerosis.
        Nat. Commun. 2016; 7: 12015
        • Jarchum I.
        • Pamer E.G.
        Regulation of innate and adaptive immunity by the commensal microbiota.
        Curr. Opin. Immunol. 2011; 23: 353-360
        • Jenkins T.A.
        • et al.
        Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis.
        Nutrients. 2016; 8: 56
        • Kelly J.R.
        • et al.
        Cross talk: the microbiota and neurodevelopmental disorders.
        Front. Neurosci. 2017; 11: 490
        • Kim M.S.
        • et al.
        Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model.
        Gut. 2020; 69: 283-294
        • Koszewicz M.
        • et al.
        Dysbiosis is one of the risk factor for stroke and cognitive impairment and potential target for treatment.
        Pharmacol. Res. 2021; 164105277
        • Laue H.E.
        • Coker M.O.
        • Madan J.C.
        The Developing microbiome from birth to 3 years: the gut-brain axis and neurodevelopmental outcomes.
        Front. Pediatr. 2022; 10815885
        • Lee Y.K.
        • et al.
        Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108 (Suppl): 4615-4622
        • Ley R.E.
        • Peterson D.A.
        • Gordon J.I.
        Ecological and evolutionary forces shaping microbial diversity in the human intestine.
        Cell. 2006; 124: 837-848
        • Lyon P.
        Of what is “minimal cognition” the half-baked version?.
        Adapt. Behav. 2020; 28: 407-424
        • Ma Q.
        • et al.
        Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis.
        J. Neuroinflamm. 2019; 16: 53
        • Mangalam A.
        • et al.
        Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease.
        Cell Rep. 2017; 20: 1269-1277
        • McEwen B.S.
        • Wingfield J.C.
        The concept of allostasis in biology and biomedicine.
        Horm. Behav. 2003; 43: 2-15
        • Mezo C.
        • et al.
        Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer's disease.
        Acta Neuropathol. Commun. 2020; 8: 119
        • Minter M.R.
        • et al.
        Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease.
        Sci. Rep. 2016; 6: 30028
        • Miyake S.
        • et al.
        Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters.
        PLoS One. 2015; 10e0137429
        • Miyauchi E.
        • et al.
        Gut microorganisms act together to exacerbate inflammation in spinal cords.
        Nature. 2020; 585: 102-106
        • Moore A.M.
        • Mathias M.
        • Valeur J.
        Contextualising the microbiota-gut-brain axis in history and culture.
        Microb. Ecol. Health Dis. 2019; 30 (Suppl)1546267
        • Morais L.H.
        • Schreiber H.L.T.
        • Mazmanian S.K.
        The gut microbiota-brain axis in behaviour and brain disorders.
        Nat. Rev. Microbiol. 2021; 19: 241-255
        • Neves A.L.
        • et al.
        Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk.
        J. Mol. Endocrinol. 2013; 51: R51-R64
        • Ochoa-Repáraz J.
        • et al.
        Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease.
        Ann. Neurol. 2011; 69: 240-247
        • Oksenberg J.R.
        Decoding multiple sclerosis: an update on genomics and future directions.
        Expert Rev. Neurother. 2013; 13 (sup): 11-19
        • Oreja-Guevara C.
        • et al.
        Cognitive dysfunctions and assessments in multiple sclerosis.
        Front. Neurol. 2019; 10: 581
        • Parodi B.
        • Kerlero de Rosbo N.
        The gut-brain axis in multiple sclerosis. Is its dysfunction a pathological trigger or a consequence of the disease?.
        Front. Immunol. 2021; 12718220
        • Pender M.P.
        • Burrows S.R.
        Epstein–Barr virus and multiple sclerosis: potential opportunities for immunotherapy.
        Clin. Transl. Immunol. 2014; 3: e27
        • Rescigno M.
        The intestinal epithelial barrier in the control of homeostasis and immunity.
        Trends Immunol. 2011; 32: 256-264
        • Rolla S.
        • et al.
        Th22 cells are expanded in multiple sclerosis and are resistant to IFN-β.
        J. Leukocyte Biol. 2014; 96: 1155-1164
        • Sadovnick A.D.
        • et al.
        A population-based study of multiple sclerosis in twins: update.
        Ann. Neurol. 1993; 33: 281-285
        • Sakon H.
        • et al.
        Sutterella parvirubra sp. Nov. and Megamonas funiformis sp. Nov., isolated from human faeces.
        Int. J. Syst. Evol. Microbiol. 2008; 58: 970-975
        • Sampson T.R.
        • Mazmanian S.K.
        Control of brain development, function, and behavior by the microbiome.
        Cell Host Microbe. 2015; 17: 565-576
        • Sarkar A.
        • et al.
        Psychobiotics and the manipulation of bacteria-gut-brain signals.
        Trends Neurosci. 2016; 39: 763-781
        • Saviano A.
        • et al.
        The gut microbiota-brain axis in acute neurological disease: focus on stroke.
        Rev. Recent Clin. Trials. 2022;
        • Silva B.A.
        • et al.
        Understanding the role of the blood brain barrier and peripheral inflammation on behavior and pathology on ongoing confined cortical lesions.
        Mult. Scler. Relat. Disord. 2022; 57103346
        • Song J.G.
        • et al.
        Analysis methods for the gut microbiome in neuropsychiatric and neurodegenerative disorders.
        Comput. Struct. Biotechnol. J. 2022; 20: 1097-1110
        • Sudo N.
        • et al.
        Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice.
        J. Physiol. 2004; 558 (Pt): 263-275
        • Summerday N.M.
        • et al.
        Vitamin D and multiple sclerosis: review of a possible association.
        J. Pharm. Pract. 2012; 25: 75-84
        • Sumowski J.F.
        • et al.
        Cognition in multiple sclerosis: state of the field and priorities for the future.
        Neurology. 2018; 90: 278-288
        • Takewaki D.
        • et al.
        Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis.
        Proc. Natl. Acad. Sci. 2020; 117: 22402-22412
        • Takewaki D.
        • Yamamura T.
        Gut microbiome research in multiple sclerosis.
        Neurosci. Res. 2021; 168: 28-31
        • Vijay-Kumar M.
        • et al.
        Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5.
        Science. 2010; 328: 228-231
        • Vital M.
        • Karch A.
        • Pieper D.H.
        Colonic butyrate-producing communities in humans: an overview using omics data.
        mSystems. 2017; 2 (-17): e00130
        • Voet S.
        • Prinz M.
        • van Loo G.
        Microglia in central nervous system inflammation and multiple sclerosis pathology.
        Trends Mol. Med. 2019; 25: 112-123
        • Westerlind H.
        • et al.
        Modest familial risks for multiple sclerosis: a registry-based study of the population of Sweden.
        Brain. 2014; 137: 770-778
        • Wingerchuk D.M.
        Smoking: effects on multiple sclerosis susceptibility and disease progression.
        Ther. Adv. Neurol. Disord. 2012; 5: 13-22
        • Yadav M.
        • et al.
        Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness.
        PLoS One. 2022; 17e0264556
        • Yuan B.
        • Lu X.J.
        • Wu Q.
        Gut microbiota and acute central nervous system injury: a new target for therapeutic intervention.
        Front. Immunol. 2021; 12800796
        • Zeraati M.
        • et al.
        Gut microbiota depletion from early adolescence alters adult immunological and neurobehavioral responses in a mouse model of multiple sclerosis.
        Neuropharmacology. 2019; 157107685
        • Zhang K.
        • Hornef M.W.
        • Dupont A.
        The intestinal epithelium as guardian of gut barrier integrity.
        Cell. Microbiol. 2015; 17: 1561-1569
        • Zhang L.
        • et al.
        Altered gut microbiota in a mouse model of Alzheimer's disease.
        J. Alzheimers Dis. 2017; 60: 1241-1257