Advertisement

Delayed cognitive processing and treatment status quo bias in early-stage multiple sclerosis

Published:August 20, 2022DOI:https://doi.org/10.1016/j.msard.2022.104138

      Highlights

      • Patients’ preferences should be considered in RRMS treatment decisions.
      • We aimed to understand factors driving status quo bias in early-stage RRMS patients.
      • Over forty percent of patients suffer cognitive delays in the early stages of RRMS.
      • Despite evidence of disease progression, patients tend to maintain their treatment.
      • Disease severity perception and cognitive delays affect patients’ treatment choices.

      Abstract

      Background

      The evolving therapeutic landscape requires more participation of patients with relapsing remitting multiple sclerosis (RRMS) in treatment decisions. The aim of this study was to assess the association between patient's self-perception, cognitive impairment and behavioral factors in treatment choices in a cohort of patients at an early stage of RRMS.

      Methods

      We conducted a multicenter, non-interventional study including adult patients with a diagnosis of RRMS, a disease duration ≤18 months and receiving care at one of the 21 participating MS centers from across Spain. We used patient-reported measures to gather information on fatigue, mood, quality of life, and perception of severity of their MS. Functional metrics (Expanded Disability Status Scale [EDSS], cognitive function by the Symbol Digit Modalities Test [SDMT], 25-foot walk test) and clinical and radiological data were provided by the treating neurologist. The primary outcome of the study was status quo (SQ) bias, defined as participant's tendency to continue taking a previously selected but inferior treatment when intensification was warranted. SQ bias was assessed based on participants treatment preference in six simulated RRMS case scenarios with evidence of clinical relapses and radiological disease progression.

      Results

      Of 189 participants who met the inclusion criteria, 188 (99.5%) fully completed the study. The mean age was 36.6 ± 9.5 years, 70.7% female, mean disease duration: 1.2 ± 0.8 years, median EDSS score: 1.0 [IQR=0.0–2.0]). Overall, 43.1% patients (n = 81/188) had an abnormal SDMT (≤49 correct answers). SQ bias was observed in at least one case scenario in 72.3% (137/188). Participant's perception of their MS severity was associated with higher SQ bias (β coeff 0.042; 95% CI 0.0074–0.076) among those with delayed cognitive processing. Higher baseline EDSS and number of T2 lesions were predictors of delayed processing speed (OR EDSS=1.57, 95% CI: 1.11–2.21, p = 0.011; OR T2 lesions=1.50, 95% CI: 1.11–2.03, p<0.01). Bayesian multilevel model accounting for clustering showed that delayed cognitive processing (exp coeff 1.06; 95% CI 1.04–1.09) and MS symptoms severity (exp coeff 1.28; 95% CI 1.22–1.33) were associated with SQ bias.

      Conclusion

      Over 40% of patients in earlier stages of RRMS experience delays in cognitive processing that might affect their decision-making ability. Our findings suggest that patients' self-perception of disease severity combined with a delay in cognitive processing would affect treatment choices leading to status quo bias early in the course of their disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Achiron A.
        • Polliack M.
        • Rao S.M.
        • Barak Y.
        • Lavie M.
        • Appelboim N.
        • Harel Y.
        Cognitive patterns and progression in multiple sclerosis: construction and validation of percentile curves.
        J. Neurol. Neurosurg. Psychiatry. 2005; 76: 744-749https://doi.org/10.1136/jnnp.2004.045518
        • Amtmann D.
        • Bamer A.M.
        • Kim J.
        • Chung H.
        • Salem R.
        People with multiple sclerosis report significantly worse symptoms and health related quality of life than the US general population as measured by PROMIS and NeuroQoL outcome measures.
        Disabil. Health J. 2018; 11: 99-107https://doi.org/10.1016/j.dhjo.2017.04.008
        • Benedict R.H.
        • DeLuca J.
        • Phillips G.
        • LaRocca N.
        • Hudson L.D.
        • Rudick R.
        • Multiple Sclerosis Outcome Assessments, C.
        Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis.
        Mult. Scler. 2017; 23: 721-733https://doi.org/10.1177/1352458517690821
        • Carey G.
        • Wilson N.
        • Janssen J.
        • Chohan A.
        • Rog D.
        • Roddam H.
        I'm walking into the unknown": qualitative insights into how emotions and lived experience related to multiple sclerosis diagnosis impact on decisions to pursue disease modifying treatment.
        Mult. Scler. Relat. Disord. 2022; 58103464https://doi.org/10.1016/j.msard.2021.103464
        • Carotenuto A.
        • Moccia M.
        • Costabile T.
        • et al.
        Associations between cognitive impairment at onset and disability accrual in young people with multiple sclerosis.
        Sci. Rep. 2019; 2 (9): 18074https://doi.org/10.1038/s41598-019-54153-7
        • Casanova B.
        • Quintanilla-Bordas C.
        • Gascon F.
        Escalation vs. early intense therapy in multiple sclerosis.
        J. Pers. Med. 2022; 12https://doi.org/10.3390/jpm12010119
        • Cerqueira J.J.
        • Compston D.A.S.
        • Geraldes R.
        • Rosa M.M.
        • Schmierer K.
        • Thompson A.
        • Tinelli M.
        • Palace J.
        Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis?.
        J. Neurol. Neurosurg. Psychiatry. 2018; 89: 844-850https://doi.org/10.1136/jnnp-2017-317509
        • Chen J.
        • Taylor B.V.
        • Blizzard L.
        • Simpson Jr., S.
        • Palmer A.J.
        • van der Mei I.A.F.
        Effects of multiple sclerosis disease-modifying therapies on employment measures using patient-reported data.
        J. Neurol. Neurosurg. Psychiatry. 2018; 89: 1200-1207https://doi.org/10.1136/jnnp-2018-318228
        • Chiaravalloti N.D.
        • DeLuca J.
        Cognitive impairment in multiple sclerosis.
        Lancet Neurol. 2008; 7: 1139-1151https://doi.org/10.1016/S1474-4422(08)70259-X
        • Cofield S.S.
        • Thomas N.
        • Tyry T.
        • Fox R.J.
        • Salter A.
        Shared decision making and autonomy among US participants with multiple sclerosis in the NARCOMS registry.
        Int. J. MS Care. 2017; 19: 303-312https://doi.org/10.7224/1537-2073.2016-091
        • Coghe G.
        • Corona F.
        • Marongiu E.
        • Fenu G.
        • Frau J.
        • Lorefice L.
        • Crisafulli A.
        • Galli M.
        • Concu A.
        • Marrosu M.G.
        • Pau M.
        • Cocco E.
        Fatigue, as measured using the Modified Fatigue Impact Scale, is a predictor of processing speed improvement induced by exercise in patients with multiple sclerosis: data from a randomized controlled trial.
        J. Neurol. 2018; 265: 1328-1333https://doi.org/10.1007/s00415-018-8836-5
        • Dennison L.
        • Brown M.
        • Kirby S.
        • Galea I.
        Do people with multiple sclerosis want to know their prognosis? A UK nationwide study.
        PLoS ONE. 2018; 13e0193407https://doi.org/10.1371/journal.pone.0193407
        • Dohmen T.
        • Falk A.
        • Huffman D.
        • Sunde U.
        • Schupp J.
        • Wagner G.G.
        Individual risk attitudes: measurement, determinants, and behavioral consequences.
        J. Eur. Econ. Assoc. 2011; 9: 522-550https://doi.org/10.1111/j.1542-4774.2011.01015.x
        • Dunn S.L.
        • Olamijulo G.B.
        • Fuglseth H.L.
        • Holden T.P.
        • Swieringa L.L.
        • Sit M.J.
        • Rieth N.P.
        • Tintle N.L.
        The state-trait hopelessness scale: development and testing.
        West. J. Nurs. Res. 2014; 36: 552-570https://doi.org/10.1177/0193945913507634
        • Fitzgerald K.C.
        • Salter A.
        • Tyry T.
        • Fox R.J.
        • Cutter G.
        • Mowry E.M.
        • Marrie R.A.
        Validation of the SymptoMScreen with performance-based or clinician-assessed outcomes.
        Mult. Scler. Relat. Disord. 2019; 29: 86-93https://doi.org/10.1016/j.msard.2019.01.031
        • Gelman A.
        Multilevel (hierarchical) modeling: what it can and cannot do.
        Technometrics. 2006; 48: 432-435https://doi.org/10.1198/004017005000000661
      1. Giovannoni, G., Butzkueven, H., Dhib-Jalbut, S., Hobart, J., Kobelt, G., Pepper, G., Sormani, M.P., Thalheim, C., Traboulsee, A., Vollmer, T., 2015. Brain health: time matters in multiple sclerosis.

        • Green R.
        • Kalina J.
        • Ford R.
        • Pandey K.
        • Kister I.
        SymptoMScreen: a tool for rapid assessment of symptom severity in MS across multiple domains.
        Appl. Neuropsychol. Adult. 2017; 24: 183-189https://doi.org/10.1080/23279095.2015.1125905
        • Kataria H.
        • Hart C.G.
        • Alizadeh A.
        • Cossoy M.
        • Kaushik D.K.
        • Bernstein C.N.
        • Marrie R.A.
        • Yong V.W.
        • Karimi-Abdolrezaee S.
        Neuregulin-1 beta 1 is implicated in pathogenesis of multiple sclerosis.
        Brain. 2021; 144: 162-185https://doi.org/10.1093/brain/awaa385
        • Kaufman M.
        • Moyer D.
        • Norton J.
        The significant change for the Timed 25-foot Walk in the multiple sclerosis functional composite.
        Mult. Scler. 2000; 6: 286-290https://doi.org/10.1177/135245850000600411
        • Khader H.A.
        • Emran B.
        • Sulaimi M.A.
        • Abdulhadi D.A.
        • Obaidli K.A.
        • Deai A.A.
        • Albatineh A.N.
        Estimating the prevalence of cognition and mental health among multiple sclerosis patients: a population-based cross-sectional study.
        Mult. Scler. Relat. Disord. 2019; 36101391https://doi.org/10.1016/j.msard.2019.101391
        • Kurtzke J.F.
        Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
        Neurology. 1983; 33: 1444-1452https://doi.org/10.1212/wnl.33.11.1444
        • Li H.
        • Hu F.
        • Zhang Y.
        • Li K.
        Comparative efficacy and acceptability of disease-modifying therapies in patients with relapsing-remitting multiple sclerosis: a systematic review and network meta-analysis.
        J. Neurol. 2020; 267: 3489-3498https://doi.org/10.1007/s00415-019-09395-w
        • Lopez-Gongora M.
        • Querol L.
        • Escartin A.
        A one-year follow-up study of the Symbol Digit Modalities Test (SDMT) and the Paced Auditory Serial Addition Test (PASAT) in relapsing-remitting multiple sclerosis: an appraisal of comparative longitudinal sensitivity.
        BMC Neurol. 2015; 15: 40https://doi.org/10.1186/s12883-015-0296-2
        • Lucchetta R.C.
        • Leonart L.P.
        • Becker J.
        • Pontarolo R.
        • Fernandez-Llimos F.
        • Wiens A.
        Safety outcomes of disease-modifying therapies for relapsing-remitting multiple sclerosis: a network meta-analysis.
        Mult. Scler. Relat. Disord. 2019; 35: 7-15https://doi.org/10.1016/j.msard.2019.06.036
        • Lynd L.D.
        • Traboulsee A.
        • Marra C.A.
        • Mittmann N.
        • Evans C.
        • Li K.H.
        • Carter M.
        • Hategekimana C.
        Quantitative analysis of multiple sclerosis patients' preferences for drug treatment: a best-worst scaling study.
        Ther. Adv. Neurol. Disord. 2016; 9: 287-296https://doi.org/10.1177/1756285616648060
        • Marrie R.A.
        • Chelune G.J.
        • Miller D.M.
        • Cohen J.A.
        Subjective cognitive complaints relate to mild impairment of cognition in multiple sclerosis.
        Mult. Scler. 2005; 11: 69-75https://doi.org/10.1191/1352458505ms1110oa
        • Maurino J.
        • Sotoca J.
        • Sempere A.P.
        • Brieva L.
        • Lopez de Silanes C.
        • Caminero A.B.
        • Terzaghi M.
        • Gracia-Gil J.
        • Saposnik G.
        High-efficacy disease-modifying therapies in people with relapsing-remitting multiple sclerosis: the role of risk attitude in treatment decisions.
        Patient. 2021; 14: 241-248https://doi.org/10.1007/s40271-020-00454-3
        • McGinley M.P.
        • Goldschmidt C.H.
        • Rae-Grant A.D.
        Diagnosis and treatment of multiple sclerosis: a review.
        JAMA. 2021; 325: 765-779https://doi.org/10.1001/jama.2020.26858
        • McNicholas N.
        • O'Connell K.
        • Yap S.M.
        • Killeen R.P.
        • Hutchinson M.
        • McGuigan C.
        Cognitive dysfunction in early multiple sclerosis: a review.
        QJM. 2018; 111: 359-364https://doi.org/10.1093/qjmed/hcx070
        • Meca-Lallana J.
        • Maurino J.
        • Hernandez-Perez M.A.
        • Sempere A.P.
        • Brieva L.
        • Garcia-Arcelay E.
        • Terzaghi M.
        • Saposnik G.
        • Ballesteros J.
        Psychometric properties of the SymptoMScreen questionnaire in a mild disability population of patients with relapsing-remitting multiple sclerosis: quantifying the patient's perspective.
        Neurol. Ther. 2020; 9: 173-179https://doi.org/10.1007/s40120-020-00176-6
        • Miller D.M.
        • Bethoux F.
        • Victorson D.
        • Nowinski C.J.
        • Buono S.
        • Lai J.S.
        • Wortman K.
        • Burns J.L.
        • Moy C.
        • Cella D.
        Validating Neuro-QoL short forms and targeted scales with people who have multiple sclerosis.
        Mult. Scler. 2016; 22: 830-841https://doi.org/10.1177/1352458515599450
        • Moccia M.
        • Lanzillo R.
        • Palladino R.
        • et al.
        Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression.
        Mult. Scler. 2016; 22: 659-667https://doi.org/10.1177/1352458515599075
        • Montalban X.
        • Gold R.
        • Thompson A.J.
        • Otero-Romero S.
        • Amato M.P.
        • Chandraratna D.
        • Clanet M.
        • Comi G.
        • Derfuss T.
        • Fazekas F.
        • Hartung H.P.
        • Havrdova E.
        • Hemmer B.
        • Kappos L.
        • Liblau R.
        • Lubetzki C.
        • Marcus E.
        • Miller D.H.
        • Olsson T.
        • Pilling S.
        • Selmaj K.
        • Siva A.
        • Sorensen P.S.
        • Sormani M.P.
        • Thalheim C.
        • Wiendl H.
        • Zipp F.
        ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis.
        Mult. Scler. 2018; 24: 96-120https://doi.org/10.1177/1352458517751049
        • Neuhaus M.
        • Calabrese P.
        • Annoni J.M.
        Decision-making in multiple sclerosis patients: a systematic review.
        Mult .Scler. Int. 2018; 20187835952https://doi.org/10.1155/2018/7835952
        • Ontaneda D.
        • Tallantyre E.
        • Kalincik T.
        • Planchon S.M.
        • Evangelou N.
        Early highly effective versus escalation treatment approaches in relapsing multiple sclerosis.
        Lancet Neurol. 2019; 18: 973-980https://doi.org/10.1016/S1474-4422(19)30151-6
        • Polman C.H.
        • Reingold S.C.
        • Banwell B.
        • Clanet M.
        • Cohen J.A.
        • Filippi M.
        • Fujihara K.
        • Havrdova E.
        • Hutchinson M.
        • Kappos L.
        • Lublin F.D.
        • Montalban X.
        • O'Connor P.
        • Sandberg-Wollheim M.
        • Thompson A.J.
        • Waubant E.
        • Weinshenker B.
        • Wolinsky J.S.
        Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria.
        Ann. Neurol. 2011; 69: 292-302https://doi.org/10.1002/ana.22366
        • Rae-Grant A.
        • Day G.S.
        • Marrie R.A.
        • Rabinstein A.
        • Cree B.A.C.
        • Gronseth G.S.
        • Haboubi M.
        • Halper J.
        • Hosey J.P.
        • Jones D.E.
        • Lisak R.
        • Pelletier D.
        • Potrebic S.
        • Sitcov C.
        • Sommers R.
        • Stachowiak J.
        • Getchius T.S.D.
        • Merillat S.A.
        • Pringsheim T.
        Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology.
        Neurology. 2018; 90: 777-788https://doi.org/10.1212/WNL.0000000000005347
        • Riazi A.
        • Hobart J.C.
        • Lamping D.L.
        • Fitzpatrick R.
        • Thompson A.J.
        Multiple Sclerosis Impact Scale (MSIS-29): reliability and validity in hospital based samples.
        J. Neurol. Neurosurg. Psychiatry. 2002; 73: 701-704https://doi.org/10.1136/jnnp.73.6.701
        • Rooney S.
        • McFadyen D.A.
        • Wood D.L.
        • Moffat D.F.
        • Paul P.L.
        Minimally important difference of the fatigue severity scale and modified fatigue impact scale in people with multiple sclerosis.
        Mult. Scler. Relat. Disord. 2019; 35: 158-163https://doi.org/10.1016/j.msard.2019.07.028
        • Sainz de la Maza S.
        • Maurino J.
        • Borges M.
        • Martin-Martinez J.
        • Sotoca J.
        • Alonso A.
        • Caminero A.B.
        • Borrega L.
        • Sanchez-Menoyo J.L.
        • Barrero-Hernandez F.J.
        • Calles C.
        • Brieva L.
        • Blasco M.R.
        • Garcia-Soto J.D.
        • Campo-Amigo M.D.
        • Navarro-Canto L.
        • Aguera E.
        • Garces M.
        • Carmona O.
        • Gabaldon-Torres L.
        • Forero L.
        • Hervas M.
        • de Alda L.R.
        • Gomez-Ballesteros R.
        • Castillo-Trivino T.
        Measuring productivity loss in early relapsing-remitting multiple sclerosis.
        Mult. Scler. Relat. Disord. 2022; 58103398https://doi.org/10.1016/j.msard.2021.103398
        • Saposnik G.
        • Mamdani M.
        • Terzaghi M.
        • Saladino M.L.
        • Silva B.
        • Tobler P.N.
        • Caceres F.
        The role of prescribing generic (non-proprietary) drugs in the prevalence of therapeutic inertia in multiple sclerosis care.
        Front. Neurol. 2018; 9: 835https://doi.org/10.3389/fneur.2018.00835
        • Saposnik G.
        • Maurino J.
        • Sempere A.P.
        • Terzaghi M.A.
        • Ruff C.C.
        • Mamdani M.
        • Tobler P.N.
        • Montalban X.
        Overcoming therapeutic inertia in multiple sclerosis care: a pilot randomized trial applying the traffic light system in medical education.
        Front. Neurol. 2017; 8: 430https://doi.org/10.3389/fneur.2017.00430
        • Saposnik G.
        • Sempere A.P.
        • Prefasi D.
        • Selchen D.
        • Ruff C.C.
        • Maurino J.
        • Tobler P.N.
        Decision-making in multiple sclerosis: the role of aversion to ambiguity for therapeutic inertia among neurologists (DIScUTIR MS).
        Front. Neurol. 2017; 8: 65https://doi.org/10.3389/fneur.2017.00065
        • Saposnik G.
        • Sotoca J.
        • Sempere A.P.
        • Candeliere-Merlicco A.
        • Diaz-Abos P.
        • Tobler P.N.
        • Terzaghi M.
        • Maurino J.
        Therapeutic status quo in patients with relapsing-remitting multiple sclerosis: a sign of poor self-perception of their clinical status?.
        Mult. Scler. Relat. Disord. 2020; 45102354https://doi.org/10.1016/j.msard.2020.102354
        • Simonsen C.S.
        • Flemmen H.O.
        • Broch L.
        • Brunborg C.
        • Berg-Hansen P.
        • Moen S.M.
        • Celius E.G.
        Early high efficacy treatment in multiple sclerosis is the best predictor of future disease activity over 1 and 2 years in a Norwegian population-based registry.
        Front. Neurol. 2021; 12693017https://doi.org/10.3389/fneur.2021.693017
        • Sinay V.
        • Perez Akly M.
        • Zanga G.
        • Ciardi C.
        • Racosta J.M.
        School performance as a marker of cognitive decline prior to diagnosis of multiple sclerosis.
        Mult. Scler. 2015; 21: 945-952https://doi.org/10.1177/1352458514554054
        • Stern A.F.
        The hospital anxiety and depression scale.
        Occup. Med. (Lond). 2014; 64: 393-394https://doi.org/10.1093/occmed/kqu024
        • Suri G.
        • Sheppes G.
        • Schwartz C.
        • Gross J.J.
        Patient inertia and the status quo bias: when an inferior option is preferred.
        Psychol. Sci. 2013; 24: 1763-1769https://doi.org/10.1177/0956797613479976
        • Thompson A.J.
        • Banwell B.L.
        • Barkhof F.
        • Carroll W.M.
        • Coetzee T.
        • Comi G.
        • Correale J.
        • Fazekas F.
        • Filippi M.
        • Freedman M.S.
        • Fujihara K.
        • Galetta S.L.
        • Hartung H.P.
        • Kappos L.
        • Lublin F.D.
        • Marrie R.A.
        • Miller A.E.
        • Miller D.H.
        • Montalban X.
        • Mowry E.M.
        • Sorensen P.S.
        • Tintore M.
        • Traboulsee A.L.
        • Trojano M.
        • Uitdehaag B.M.J.
        • Vukusic S.
        • Waubant E.
        • Weinshenker B.G.
        • Reingold S.C.
        • Cohen J.A.
        Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.
        Lancet Neurol. 2018; 17: 162-173https://doi.org/10.1016/S1474-4422(17)30470-2
        • Van Schependom J.
        • D'Hooghe M B.
        • Cleynhens K.
        • D'Hooge M.
        • Haelewyck M.C.
        • De Keyser J.
        • Nagels G.
        Reduced information processing speed as primum movens for cognitive decline in MS.
        Mult. Scler. 2015; 21: 83-91https://doi.org/10.1177/1352458514537012
        • Visser L.A.
        • Louapre C.
        • Uyl-de Groot C.A.
        • Redekop W.K.
        Patient needs and preferences in relapsing-remitting multiple sclerosis: a systematic review.
        Mult. Scler. Relat. Disord. 2020; 39101929https://doi.org/10.1016/j.msard.2020.101929
        • Yeandle D.
        • Rieckmann P.
        • Giovannoni G.
        • Alexandri N.
        • Langdon D.
        Patient power revolution in multiple sclerosis: navigating the new frontier.
        Neurol. Ther. 2018; 7: 179-187https://doi.org/10.1007/s40120-018-0118-8