Advertisement

CSF β-amyloid is not a prognostic marker in multiple sclerosis patients

Published:August 08, 2022DOI:https://doi.org/10.1016/j.msard.2022.104096

      Abstract

      Background

      Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disorder. Given its variable prognosis, the identification of new prognostic biomarkers is needed.

      Objectives

      The aims of our study were to assess the prognostic values of CSF β-amyloid-42 (Aβ42) and β-amyloid-40 (Aβ40) levels in MS patients.

      Methods

      Eighty-nine (55 RRMS, 34 PPMS) patients with a recent diagnosis and 27 controls were included in this single-centre retrospective study. Clinical, MRI and CSF data have been collected and were analysed to evaluate the potential value of CSF Aβ42 and Aβ40 levels as MS biomarkers.

      Results

      CSF Aβ levels as well as Aβ42/Aβ40 ratio were identical in MS patients and controls. Although CSF Aβ42 and Aβ40 levels were higher in PPMS than in RRMS and in patients with higher EDSS, a multivariate analysis including age and EDSS demonstrated that only age of patients was associated with CSF amyloid levels. Additionally, 55 RRMS patients were followed for 3 years. We found no association between baseline amyloid levels and 3-year disability.

      Conclusion

      Our data do not support an association between CSF amyloid levels and MS status and disease severity. We suggest that CSF amyloid levels are not a prognostic biomarker in recently diagnosed RRMS.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abdelhak A.
        • Foschi M.
        • Abu-Rumeileh S.
        • Yue J.K.
        • D'Anna L.
        • Huss A.
        • et al.
        Blood GFAP as an emerging biomarker in brain and spinal cord disorders.
        Nat. Rev. Neurol. 2022; 18 (mars): 158-172
        • Augutis K.
        • Axelsson M.
        • Portelius E.
        • Brinkmalm G.
        • Andreasson U.
        • Gustavsson M.K.
        • et al.
        Cerebrospinal fluid biomarkers of β-amyloid metabolism in multiple sclerosis.
        Mult. Scler. 2013; 19 (avr): 543-552
        • Augutis K.
        • Axelsson M.
        • Portelius E.
        • Brinkmalm G.
        • Andreasson U.
        • Gustavsson M.K.
        • et al.
        Cerebrospinal fluid biomarkers of β-amyloid metabolism in multiple sclerosis.
        Mult. Scler. 2013; 19 (avr): 543-552
        • Benkert P.
        • Meier S.
        • Schaedelin S.
        • Manouchehrinia A.
        • Yaldizli Ö.
        • Maceski A.
        • et al.
        Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study.
        Lancet Neurol. 2022; 21 (mars): 246-257
        • Bittner S.
        • Oh J.
        • Havrdová E.K.
        • Tintoré M.
        • Zipp F.
        The potential of serum neurofilament as biomarker for multiple sclerosis.
        Brain. 2021; 144 (nov): 2954-2963
        • Brownlee W.J.
        • Altmann D.R.
        • Prados F.
        • Miszkiel K.A.
        • Eshaghi A.
        • Gandini Wheeler-Kingshott C.A.M.
        • et al.
        Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis.
        Brain. 2019; 142 (août): 2276-2287
        • Cantó E.
        • Tintoré M.
        • Villar L.M.
        • Costa C.
        • Nurtdinov R.
        • Álvarez-Cermeño J.C.
        • et al.
        Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes.
        Brain. 2015; 138 (avr): 918-931
        • Chandra A.
        Role of Amyloid from a multiple sclerosis perspective: a literature review.
        NeuroImmunoModulation. 2015; 22: 343-346
        • del Campo M.
        • Mollenhauer B.
        • Bertolotto A.
        • Engelborghs S.
        • Hampel H.
        • Simonsen A.H.
        • et al.
        Recommendations to standardize preanalytical confounding factors in Alzheimer's and Parkinson's disease cerebrospinal fluid biomarkers: an update.
        Biomark. Med. 2012; 6 (août): 419-430
        • Dubuisson N.
        • Puentes F.
        • Giovannoni G.
        • Gnanapavan S.
        Science is 1% inspiration and 99% biomarkers.
        Mult. Scler. 2017; 23 (oct): 1442-1452
        • Gehrmann J.
        • Banati R.B.
        • Cuzner M.L.
        • Kreutzberg G.W.
        • Newcombe J.
        Amyloid precursor protein (APP) expression in multiple sclerosis lesions.
        Glia. 1995; 15 (oct): 141-151
        • Giovannoni G.
        Peripheral blood neurofilament light chain levels: the neurologist's C-reactive protein?.
        Brain. 2018; 141 (1 août): 2235-2237
        • Hansson O.
        • Lehmann S.
        • Otto M.
        • Zetterberg H.
        • Lewczuk P.
        Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer's disease.
        Alzheimers Res. Ther. 2019; 11 (22 avr): 34
        • Hansson O.
        • Lehmann S.
        • Otto M.
        • Zetterberg H.
        • Lewczuk P.
        Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer's disease.
        Alzheimers Res. Ther. 2019; 11 (déc): 34
        • Hansson O.
        Biomarkers for neurodegenerative diseases.
        Nat. Med. 2021; 27 (juin): 954-963
        • Havas J.
        • Leray E.
        • Rollot F.
        • Casey R.
        • Michel L.
        • Lejeune F.
        • et al.
        Predictive medicine in multiple sclerosis: a systematic review.
        Mult. Scler. Relat. Disord. 2020; 40 (mai)101928
        • Kornek B.
        • Storch M.K.
        • Weissert R.
        • Wallstroem E.
        • Stefferl A.
        • Olsson T.
        • et al.
        Multiple sclerosis and chronic autoimmune encephalomyelitis.
        Am. J. Pathol. 2000; 157 (juill): 267-276
        • Lublin F.D.
        • Coetzee T.
        • Cohen J.A.
        • Marrie R.A.
        • Thompson A.J.
        The 2013 clinical course descriptors for multiple sclerosis: a clarification.
        Neurology. 2020; 94 (juin): 1088-1092
        • Malpas C.B.
        • Manouchehrinia A.
        • Sharmin S.
        • Roos I.
        • Horakova D.
        • Havrdova E.K.
        • et al.
        Early clinical markers of aggressive multiple sclerosis.
        Brain. 2020; 143 (mai): 1400-1413
        • Martin S.J.
        • McGlasson S.
        • Hunt D.
        • Overell J.
        Cerebrospinal fluid neurofilament light chain in multiple sclerosis and its subtypes: a meta-analysis of case–control studies.
        J. Neurol. Neurosurg. Psychiatry. 2019; 90 (sept): 1059-1067
        • Martínez M.A.M.
        • Olsson B.
        • Bau L.
        • Matas E.
        • Calvo Á.C.
        • Andreasson U.
        • et al.
        Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis.
        Mult. Scler. 2015; 21 (avr): 550-561
        • Mathur D.
        • Mishra B.K.
        • Rout S.
        • Lopez-Iranzo F.J.
        • Lopez-Rodas G.
        • Vallamkondu J.
        • et al.
        Potential biomarkers associated with multiple sclerosis pathology.
        Int. J. Mol. Sci. 2021; 22 (janv): 10323
        • Mori F.
        • Rossi S.
        • Sancesario G.
        • Codecà C.
        • Mataluni G.
        • Monteleone F.
        • et al.
        Cognitive and cortical plasticity deficits correlate with altered amyloid-β csf levels in multiple sclerosis.
        Neuropsychopharmacology. 2011; 36 (févr): 559-568
        • Nguyen K.V.
        The human β-amyloid precursor protein: biomolecular and epigenetic aspects.
        Biomol. Concepts. 2015; 6 (mars): 11-32
        • on behalf of the MAGNIMS study group
        MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients.
        Nat. Rev. Neurol. 2015; 11 (oct): 597-606
        • Pietroboni A.M.
        • Caprioli M.
        • Carandini T.
        • Scarioni M.
        • Ghezzi L.
        • Arighi A.
        • et al.
        CSF β-amyloid predicts prognosis in patients with multiple sclerosis.
        Mult. Scler. 2019; 25 (août): 1223-1231
        • Pietroboni A.M.
        • Schiano di Cola F.
        • Colombi A.
        • Carandini T.
        • Fenoglio C.
        • Ghezzi L.
        • et al.
        CSF β-amyloid predicts early cerebellar atrophy and is associated with a poor prognosis in multiple sclerosis.
        Mult. Scler. Relat. Disord. 2020; 37 (janv)101462
        • Pietroboni A.M.
        • Schiano di Cola F.
        • Scarioni M.
        • Fenoglio C.
        • Spanò B.
        • Arighi A.
        • et al.
        CSF β-amyloid as a putative biomarker of disease progression in multiple sclerosis.
        Mult. Scler. 2017; 23 (juill): 1085-1091
        • Reich D.S.
        • Lucchinetti C.F.
        • Calabresi PA.
        Multiple sclerosis.
        N. Engl. J. Med. 2018; 378 (Longo DL, éditeur) (janv): 169-180
        • Reynders T.
        • D'haeseleer M.
        • De Keyser J.
        • Nagels G.
        • D'hooghe M.B.
        Definition, prevalence and predictive factors of benign multiple sclerosis.
        eNeurologicalSci. 2017; 7 (juin): 37-43
        • Rotstein D.
        • Montalban X.
        Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis.
        Nat. Rev. Neurol. 2019; 15 (mai): 287-300
        • Sun M.
        • Liu N.
        • Xie Q.
        • Li X.
        • Sun J.
        • Wang H.
        • et al.
        A candidate biomarker of glial fibrillary acidic protein in CSF and blood in differentiating multiple sclerosis and its subtypes: a systematic review and meta-analysis.
        Mult. Scler. Relat. Disord. 2021; 51 (juin)102870
        • Szalardy L.
        • Zadori D.
        • Simu M.
        • Bencsik K.
        • Vecsei L.
        • Klivenyi P.
        Evaluating biomarkers of neuronal degeneration and neuroinflammation in CSF of patients with multiple sclerosis–osteopontin as a potential marker of clinical severity.
        J. Neurol. Sci. 2013; 331 (août): 38-42
        • Thompson A.J.
        • Banwell B.L.
        • Barkhof F.
        • Carroll W.M.
        • Coetzee T.
        • Comi G.
        • et al.
        Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.
        Lancet Neurol. 2018; 17 (févr): 162-173
        • Tintore M.
        • Arrambide G.
        • Otero-Romero S.
        • Carbonell-Mirabent P.
        • Río J.
        • Tur C.
        • et al.
        The long-term outcomes of CIS patients in the Barcelona inception cohort: Looking back to recognize aggressive MS.
        Mult. Scler. 2019; (oct, 1352458519877810)