Advertisement

High-efficacy therapy reduces subcortical grey matter volume loss in Japanese patients with relapse-onset multiple sclerosis: A 2-year cohort study

      Highlights

      • Effectiveness of high-efficacy therapy (HET) in multiple sclerosis (MS) is debated.
      • It is controversial whether HET is beneficial on brain volume loss (BVL) in MS.
      • Whether BVL differs with HET or low-efficacy therapy (LET) is investigated.
      • Disease activity was lower in Japanese patients with HET than LET over 2 years.
      • HET strongly reduced subcortical grey matter volume loss compared to LET.

      Abstract

      Background

      : Different treatment strategies can have varying effects on disability and whole brain volume in patients with multiple sclerosis (MS). However, the association between regional brain volume and treatment efficacy is currently unclear. Our objective was to determine whether whole brain volume, as well as the regional volume of cortical and subcortical grey matter, differ with the administration of high-efficacy therapy (HET) versus low-efficacy therapy (LET).

      Methods

      : We evaluated clinical data and change in regional brain volume in 44 patients with relapse-onset MS, who underwent HET (n = 19) or LET (n = 25). Regional brain volume was determined with three-dimensional T1-weighted magnetic resonance imaging using FreeSurfer. The association between volume change and treatment type was assessed via generalised linear mixed models (GLMMs).

      Results

      : During the observation period (2.0 ± 0.16 years), the proportion of patients with a “no evidence of disease activity-3″ status was significantly greater in those who underwent HET versus LET (p = 0.012). HET was positively associated with volume changes in the cortex (β = 0.64, p = 0.0499), left (β = 0.98, p = 0.0033) and right (β = 0.77, p = 0.019) caudate and right putamen (β = 0.87, p = 0.0077), after adjusting for age, sex, and MS severity scores in the GLMMs. Further correction for multiple comparisons by false discovery rate revealed that HET was consistently associated with the volume changes of the left caudate (p = 0.049) and right putamen (p = 0.049).

      Conclusion

      : HET can improve the mid-term prognosis of Japanese patients with relapse-onset MS by reducing disease activity and regional brain volume loss.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akaishi T.
        • Nakashima I.
        • Mugikura S.
        • Aoki M.
        • Fujihara K.
        Whole brain and grey matter volume of Japanese patients with multiple sclerosis.
        J. Neuroimmunol. 2017; 306: 68-75https://doi.org/10.1016/j.jneuroim.2017.03.009
        • Azevedo C.J.
        • Cen S.Y.
        • Khadka S.
        • Liu S.
        • Kornak J.
        • Shi Y.
        • Zheng L.
        • Hauser S.L.
        • Pelletier D.
        Thalamic atrophy in multiple sclerosis: a magnetic resonance imaging marker of neurodegeneration throughout disease.
        Ann. Neurol. 2018; 83: 223-234https://doi.org/10.1002/ana.25150
        • Berry D.A.
        • Ayers G.D.
        Symmetrized percent change for treatment comparisons.
        Am. Stat. 2006; 60: 27-31https://doi.org/10.1198/000313006×90684
        • Branger P.
        • Parienti J.J.
        • Sormani M.P.
        • Defer G.
        The effect of disease-modifying drugs on brain atrophy in relapsing-remitting multiple sclerosis: a meta-analysis.
        PLoS ONE. 2016; 11e0149685https://doi.org/10.1371/journal.pone.0149685
        • Brown J.W.L.
        • Coles A.
        • Horakova D.
        • Havrdova E.
        • Izquierdo G.
        • Prat A.
        • Girard M.
        • Duquette P.
        • Trojano M.
        • Lugaresi A.
        • Bergamaschi R.
        • Grammond P.
        • Alroughani R.
        • Hupperts R.
        • McCombe P.
        • Van Pesch V.
        • Sola P.
        • Ferraro D.
        • Grand'Maison F.
        • Terzi M.
        • Lechner-Scott J.
        • Flechter S.
        • Slee M.
        • Shaygannejad V.
        • Pucci E.
        • Granella F.
        • Jokubaitis V.
        • Willis M.
        • Rice C.
        • Scolding N.
        • Wilkins A.
        • Pearson O.R.
        • Ziemssen T.
        • Hutchinson M.
        • Harding K.
        • Jones J.
        • McGuigan C.
        • Butzkueven H.
        • Kalincik T.
        • Robertson N.
        Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis.
        JAMA. 2019; 321: 175-187https://doi.org/10.1001/jama.2018.20588
        • Buron M.D.
        • Chalmer T.A.
        • Sellebjerg F.
        • Barzinji I.
        • Christensen J.R.
        • Christensen M.K.
        • Hansen V.
        • Illes Z.
        • Jensen H.B.
        • Kant M.
        • Papp V.
        • Petersen T.
        • Rasmussen P.V.
        • Schäfer J.
        • Theódórsdóttir Á.
        • Weglewski A.
        • Sorensen P.S.
        • Magyari M.
        Initial high-efficacy disease-modifying therapy in multiple sclerosis: a nationwide cohort study.
        Neurology. 2020; 95: e1041-e1051https://doi.org/10.1212/WNL.0000000000010135
        • Cole T.J.
        • Altman D.G.
        Statistics Notes: what is a percentage difference?.
        BMJ. 2017; 358: 3663https://doi.org/10.1136/bmj.j3663
        • Eshaghi A.
        • Marinescu R.V.
        • Young A.L.
        • Firth N.C.
        • Prados F.
        • Jorge Cardoso M.
        • Tur C.
        • De Angelis F.
        • Cawley N.
        • Brownlee W.J.
        • De Stefano N.
        • Laura Stromillo M.
        • Battaglini M.
        • Ruggieri S.
        • Gasperini C.
        • Filippi M.
        • Rocca M.A.
        • Rovira A.
        • Sastre-Garriga J.
        • Geurts J.J.G.
        • Vrenken H.
        • Wottschel V.
        • Leurs C.E.
        • Uitdehaag B.
        • Pirpamer L.
        • Enzinger C.
        • Ourselin S.
        • Gandini Wheeler-Kingshott C.A.
        • Chard D.
        • Thompson A.J.
        • Barkhof F.
        • Alexander D.C.
        • Ciccarelli O.
        Progression of regional grey matter atrophy in multiple sclerosis.
        Brain. 2018; 141: 1665-1677https://doi.org/10.1093/brain/awy088
        • Fischl B.
        • Dale A.M.
        Measuring the thickness of the human cerebral cortex from magnetic resonance images.
        Proc. Natl. Acad. Sci. 2000; 97: 11050-11055
        • Harding K.
        • Williams O.
        • Willis M.
        • Hrastelj J.
        • Rimmer A.
        • Joseph F.
        • Tomassini V.
        • Wardle M.
        • Pickersgill T.
        • Robertson N.
        • Tallantyre E.
        Clinical Outcomes of Escalation vs Early Intensive Disease-Modifying Therapy in Patients With Multiple Sclerosis.
        JAMA Neurol. 2019; : 1-6https://doi.org/10.1001/jamaneurol.2018.4905
        • He A.
        • Merkel B.
        • Brown J.W.L.
        • Zhovits Ryerson L.
        • Kister I.
        • Malpas C.B.
        • Sharmin S.
        • Horakova D.
        • Kubala Havrdova E.
        • Spelman T.
        • Izquierdo G.
        • Eichau S.
        • Trojano M.
        • Lugaresi A.
        • Hupperts R.
        • Sola P.
        • Ferraro D.
        • Lycke J.
        • Grand'Maison F.
        • Prat A.
        • Girard M.
        • Duquette P.
        • Larochelle C.
        • Svenningsson A.
        • Petersen T.
        • Grammond P.
        • Granella F.
        • Van Pesch V.
        • Bergamaschi R.
        • McGuigan C.
        • Coles A.
        • Hillert J.
        • Piehl F.
        • Butzkueven H.
        • Kalincik T.
        Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study.
        Lancet Neurol. 2020; 19: 307-316https://doi.org/10.1016/S1474-4422(20)30067-3
        • Masuda H.
        • Mori M.
        • Hirano S.
        • Uzawa A.
        • Uchida T.
        • Ohtani R.
        • Aoki R.
        • Kuwabara S.
        Comparison of brain atrophy in patients with multiple sclerosis treated with first- versus second-generation disease modifying therapy without clinical relapse.
        Eur. J. Neurol. 2020; 27: 2056-2061https://doi.org/10.1111/ene.14335
        • Meijerman A.
        • Amiri H.
        • Steenwijk M.D.
        • Jonker M.A.
        • Van Schijndel R.A.
        • Cover K.S.
        • Vrenken H.
        Reproducibility of deep gray matter atrophy rate measurement in a large multicenter dataset.
        Am. J. Neuroradiol. 2018; 39: 46-53https://doi.org/10.3174/ajnr.A5459
        • Nemoto K.
        • Dan I.
        • Rorden C.
        • Ohnishi T.
        • Tsuzuki D.
        • Okamoto M.
        • Yamashita F.
        • Asada T.
        Lin4Neuro: a customized Linux distribution ready for neuroimaging analysis.
        BMC Med. Imaging. 2011; 25: 3https://doi.org/10.1186/1471-2342-11-3
        • Piccolo L.
        • Kumar G.
        • Nakashima I.
        • Misu T.
        • Kong Y.
        • Wakerley B.
        • Ryan S.
        • Cavey A.
        • Fujihara K.
        • Palace J.
        Multiple sclerosis in Japan appears to be a milder disease compared to the UK.
        J. Neurol. 2015; 262: 831-836
        • Sotirchos E.S.
        • Gonzalez-Caldito N.
        • Dewey B.E.
        • Fitzgerald K.C.
        • Glaister J.
        • Filippatou A.
        • Ogbuokiri E.
        • Feldman S.
        • Kwakyi O.
        • Risher H.
        • Crainiceanu C.
        • Pham D.L.
        • Van Zijl P.C.
        • Mowry E.M.
        • Reich D.S.
        • Prince J.L.
        • Calabresi P.A.
        • Saidha S.
        Effect of disease-modifying therapies on subcortical gray matter atrophy in multiple sclerosis.
        Mult. Scler. J. 2020; 26: 312-321https://doi.org/10.1177/1352458519826364
        • Tsivgoulis G.
        • Katsanos A.H.
        • Grigoriadis N.
        • Hadjigeorgiou G.M.
        • Heliopoulos I.
        • Kilidireas C.
        • Voumvourakis K.
        The effect of disease modifying therapies on brain atrophy in patients with relapsing-remitting multiple sclerosis: a systematic review and meta-analysis.
        PLoS ONE. 2015; 10: 1-10https://doi.org/10.1371/journal.pone.0116511
        • Vidal-Jordana A.
        • Sastre-Garriga J.
        • Pérez-Miralles F.
        • Tur C.
        • Tintoré M.
        • Horga A.
        • Auger C.
        • Río J.
        • Nos C.
        • Edo M.C.
        • Arévalo M.J.
        • Castilló J.
        • Rovira A.
        • Montalban X.
        Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes.
        Mult. Scler. J. 2013; 19: 1175-1181https://doi.org/10.1177/1352458512473190
        • Zivadinov R.
        • Stu O.
        Mechanisms of action of disease-modifying agents and brain volume changes in multiple sclerosis.
        Neurolgy. 2008; 71: 136-144https://doi.org/10.1212/01.wnl.0000316810.01120.05