Advertisement

Prolonged visual evoked potential latency predicts longitudinal worsening of fatigue in people with multiple sclerosis

      Highlights

      • Prolonged baseline VEP latency predicts worsening of global fatigue over time in MS.
      • Longitudinal increase in VEP latency predicts worsening of cognitive fatigue in MS.
      • VEP-fatigue association was strongest with high baseline fatigue and depression.
      • VEP latency may be useful for monitoring changes in fatigue in MS.

      Abstract

      Background

      Fatigue is a common problem experienced by people with multiple sclerosis (PwMS) and can impact physical, cognitive, and psychosocial aspects of daily living and quality of life. The tracking of meaningful longitudinal change in subjective fatigue that occurs as a result of MS activity may be enhanced by incorporating objective neurophysiological measures into longitudinal assessment. To examine this possibility, we examined the longitudinal relationship between visual evoked potential (VEP) measures and a variety of fatigue measures over an approximately two-year period in PwMS.

      Methods

      VEP measures were obtained using a checkerboard pattern-reversal paradigm. Fatigue was assessed with the Modified Fatigue Impact Scale (MFIS Global, Physical, Cognitive, and Psychosocial subscales) and the Fatigue Severity Scale (FSS) questionnaires. Multiple linear regression analyses were conducted in which the change in each fatigue scale score from baseline to follow-up (T1-to-T2) served as the outcome variables for separate models. Predictor variables included the peak latency of the P100 component of the VEP (maximum peak among the two eyes) and the inter-ocular latency (IOL) at T1, the T1-to-T2 change score for maximum VEP latency and IOL, and the fatigue score at T1 that corresponded to each outcome measure.

      Results

      Prolonged baseline VEP latency was a significant predictor of the T1-to-T2 increase in MFIS Global score, and increased VEP latency from baseline to follow-up was significantly associated with MFIS Cognitive score over the same time period. Furthermore, VEP latency measures in these two models were better predictors of changes in fatigue than baseline fatigue scores were, based on the magnitude of the standardized beta coefficients. Subsequent post-hoc analyses revealed that the relationship between change in VEP latency and change in MFIS Cognitive score was evident primarily for PwMS that had elevated MFIS Cognitive score at baseline.

      Conclusion

      The present study provides novel evidence that prolonged VEP latency is predictive of worsening of global and cognitive fatigue in PwMS. VEP latency measures may therefore provide clinical utility for monitoring changes in fatigue in PwMS, when used in conjunction with other clinical tools.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ayache S.S.
        • Chalah M.A.
        Fatigue in multiple sclerosis – insights into evaluation and management.
        Neurophys. Clin. Clin. Neurophysiol. 2017; 47: 139-171
        • Ayache S.S.
        • Chalah M.A.
        Fatigue and affective manifestations in multiple sclerosis – a cluster approach.
        Brain Sci. 2020; 10: 10
        • Barton J.L.
        • Garber J.Y.
        • Klistorner A.
        • Barnett M.H.
        The electrophysiological assessment of visual function in multiple sclerosis.
        Clin. Neurophysiol. Pract. 2019; 4: 90-96
        • Bester M.
        • Lazar M.
        • Petracca M.
        • Babb J.S.
        • Herbert J.
        • Grossman R.I.
        • Inglese M.
        Tract-specific white matter correlates of fatigue and cognitive impairment in benign multiple sclerosis.
        J. Neurol. Sci. 2013; 330: 61-66
        • Bisecco A.
        • Nardo D.
        • Docimo F.
        • Caiazzo R.
        • d'Ambrosio G.
        • Bonavita A.
        • Gallo S.
        Fatigue in multiple sclerosis; the contribution of resting-state functional connectivity reorganization.
        Mult. Scler. J. 2018; 24: 1696-1705
        • Brown R.F.
        • Valpiani E.M.
        • Tennant C.C.
        • Dunn S.M.
        • Sharrock M.
        • Hodgkinson S.
        • Pollard J.D
        Longitudinal assessment of anxiety, depression, and fatigue in people with multiple sclerosis.
        Psychol. Psychother. Theory Res. Pract. 2009; 82: 41-56
        • Calabrese M.
        • Rinaldi F.
        • Grossi P.
        • Mattisi I.
        • Bernardi V.
        • Favaretto A.
        • Perini G.
        Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis.
        Mult. Scler. 2010; 16: 1220-1228
        • Canham L.J.W.
        • Kane N.
        • Oware A.
        • Walsh P.
        • Blake K.
        • Inglis K…C.
        Mulltimodal neurophysiological evaluation of primary progressive multiple sclerosis – an increasingly valid biomarker, with limits.
        Mult. Scler. Relat. Disord. 2015; 4: 607-613
        • Capone F.
        • Motolese F.
        • Falato E.
        • Rossi M.
        • Di Lazzaro V.
        The potential role of neurophysiology in the management of multiple sclerosis-related fatigue.
        Front. Neurol. 2020; 11: 251
        • Cehelyk E.K.
        • Harvey D.Y.
        • Grubb M.L.
        • Jalel R.
        • El-Sibai M.S.
        • Markowitz C.E.B.
        • Hamilton C.
        Uncovering the association between fatigue and fatigability in multiple sclerosis using cognitive control.
        Mult. Scler. Relat. Disord. 2019; 27: 269-275
        • Compston A.E.G.
        • McDonald I.
        • Matthews B.
        • Wekerle H.
        Symptoms and signs of multiple sclerosis.
        McAlpine's Multiple Sclerosis. 3rd ed. Churchill Livingstone, London1998
        • Cooray G.K.
        • Sundgren M.
        • Brismar T.
        Mechanism of visual network dysfunction in relapsing-remitting multiple sclerosis and its relation to cognition.
        Clin. Neurophysiol. 2020; 131: 361-367
        • Covey T.J.
        • Golan D.
        • Doniger G.M.
        • Sergott R.
        • Zarif M.
        • Srinivasan J.
        • Bumstead W.
        • Buhse
        • Mebrahtu G.
        Visual evoked potential latency predicts cognitive function in people with multiple sclerosis.
        J. Neurol. 2021; 68: 4311-4320
        • Covey T.J.
        • Golan D.
        • Doniger G.M.
        • Sergott R.
        • Zariff M.
        • Bumstead B.
        • Buhse M.
        • Kaczmarek O.
        • Mebrahtu S.
        • Bergmann C.
        • Wilken J.
        • Gudesblatt M.
        The relationship between cognitive impairment, cognitive fatigue, and visual evoked potential latency in people with multiple sclerosis.
        Mult. Scler. Relat. Disord. 2022; 57103349
        • Dobryakova E.
        • Genova H.M.
        • DeLuca J.
        • Wylie G.R
        The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders.
        Front. Neurol. 2015; 6: 52
        • Engström M.
        • Flensner G.
        • Landtblom A.M.
        • Ek A.C.
        • Karlsson T.
        Thalamo-striato-cortical determinants to fatigue in multiple sclerosis.
        Brain Behav. 2013; 3: 715-728
        • Finke C.
        • Schlichting J.
        • Papazoglou S.
        • Scheel M.
        • Freing A.
        • Soemmer C.
        • Pech
        • Pajkert P.
        • Wuerfel P.
        • Paul B.
        Altered basal ganglia functional connectivity in multiple sclerosis patients with fatigue.
        Mult. Scler. J. 2015; 21: 925-934
        • Fisk J.D.
        • Ritvo P.G.
        • Ross L.
        • Haase D.A.
        • Marrie T.J.
        • Schlech W.F
        Measuring the functional impact of fatigue: initial validation of the fatigue impact scale.
        Clin. Infect. Dis. 1994; 18: S79-S83
        • Golan D.
        • Doniger G.M.
        • Wissemann K.
        • Zarif M.
        • Bumstead B.
        • Buhse M.
        • Fafard
        • Lavi W.
        • Gudesblatt
        The impact of subjective cognitive fatigue and depression on cognitive function in patients with multiple sclerosis.
        Mult. Scler. J. 2018; 24: 196-204
        • Greeke E.E.
        • Chua A.S.
        • Healy B.C.
        • Rintell D.J.
        • Chitnis T.
        • Glanz B.I
        Depression and fatigue in patients with multiple sclerosis.
        J. Neurol. Sci. 2017; 380: 236-241
        • Hardmeier M.
        • Jacques F.
        • Albrecht P.
        • Bousleiman H.
        • Schindler C.
        • Leocani L.
        • Fuhr P.
        Multicentre assessment of motor and sensory evoked potentials in multiple sclerosis: reliability and implications for clinical trials.
        Mult. Scler. J. Exp. Transl. Clin. 2019; 5 (April-June): 1-11
        • Hildebrandt H.
        • Eling P.
        A longitudinal study on fatigue, depression, and their relation to neurocognition in multiple sclerosis.
        J. Clin. Exp. Neuropsychol. 2014; 36: 410-417
        • Hu M.
        • Muhlert N.
        • Robertson N.
        • Winter M.
        Perceived fatigue and cognitive performance change in multiple sclerosis: uncovering predictors beyond baseline fatigue.
        Mult. Scler. Relat. Disord. 2019; 32: 46-53
        • Johansson S.
        • Ytterberg C.
        • Hillert J.
        • Widén Holmqvist L.
        • von Koch L.
        A longitudinal study of variations in and predictors of fatigue in multiple sclerosis.
        J. Neurol. Neurosurg. Psychiatry,. 2008; 79: 454-457
        • Johnson S.L.
        The concept of fatigue in multiple sclerosis.
        J. Neurosci. Nurs. 2008; 40: 72-77
        • Kratz A.L.
        • Murphy S.L.
        • Braley T.J
        Ecological momentary assessment of pain, fatigue, depressive, and cognitive symptoms reveals significant daily variability in multiple sclerosis.
        Arch. Phys. Med. Rehabil. 2017; 98: 2142-2150
        • Krupp L.B.
        • LaRocca N.G.
        • Muir-Nash J.
        • Steinberg A.D
        The fatigue severity scale; application to patients with multiple sclerosis and systemic lupus erythematosus.
        Arch. Neurol. 1989; 46: 1121-1123
        • Krupp L.B.
        • Serafin D.J.
        • Christodoulou C.
        Multiple sclerosis-associated fatigue.
        Expert Rev. Neurother. 2010; 10: 1437-1447
        • Larson R.D.
        Psychometric properties of the modified fatigue impact scale.
        Int. J. MS Care. 2013; 15: 15-20
        • Learmonth Y.C.
        • Dlugonski D.
        • Pilutti L.A.
        • Sandroff B.M.
        • Klaren R.
        • Motl R.W
        Psychometric properties of the fatigue severity scale and the modified fatigue impact scale.
        J. Neurol. Sci. 2013; 331: 102-107
        • Learmonth Y.C.
        • Motl R.W.
        • Sandroff B.M.
        • Pula J.H.
        • Cadavid D.
        Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis.
        BMC Neurol. 2013; 13 (Article number): 37
        • Leocani L.
        • Colombo B.
        • Comi G.
        Physiopathology of fatigue in multiple sclerosis.
        Neurol. Sci. 2008; 29: S241-S243
        • Leocani L.
        • Guerrieri S.
        • Comi G.
        Visual evoked potentials as a biomarker in multiple sclerosis and associated optic neuritis.
        J. Neuroophthalmol. 2018; 38: 350-357
        • Liepert J.
        • Mingers D.
        • Heesen C.
        • Bäumer
        • Weiller C.
        Motor cortex excitability and fatigue in multiple sclerosis: a transcranial magnetic stimulation study.
        Mult. Scler. 2005; 11: 316-321
        • Lin F.
        • Zivadinov R.
        • Hagemeier J.
        • Weinstock-Guttman B.
        • Vaughn C.
        • Gandhi S.
        • Jakimovski
        • Hulst B.
        • Bergsland F.
        • Dwyer
        Altered nuclei-specific thalamic functional connectivity patterns in multiple sclerosis and their associations with fatigue and cognition.
        Mult. Scler. J. 2019; 25: 1243-1254
        • Marrie R.A.
        • Fisher E.
        • Miller D.M.
        • Lee J.C.
        • Rudick R.A
        Association of fatigue and brain atrophy in multiple sclerosis.
        J. Neurol. Sci. 2005; 228: 161-166
        • Morrow S.A.
        • Weinstock-Guttman B.
        • Munschauer F.E.
        • Hojnacki D.
        • Benedict R.H.B.
        Subjective fatigue is not associated with cognitive impairment in multiple sclerosis: cross-sectional and longitudinal analysis.
        Mult. Scler. 2009; 15: 998-1005
        • Neumann M.
        • Sterr A.
        • Claros-Salinas D.
        • Gütler R.
        • Ulrich R.
        • Dettmers C.
        Modulation of alertness by sustained cognitive demand in MS as surrogate measures of fatigue and fatigability.
        J. Neurol. Sci. 2014; 340: 178-182
        • Niino M.
        • Mifune N.
        • Kohrihama T.
        • Mori M.
        • Ohashi T.
        • Kawachi I.
        • Shimizu
        • Fukaura N.
        • Kusunoki M.
        • Yoshida K.
        • Nomura Y.
        • Yoshii K.
        • Nakane Y.
        • Matsui M.
        • Kikuchi
        Apathy/depression, but not subjective fatigue, is related with cognitive dysfunction in patients with multiple sclerosis.
        BMC Neurol. 2014; 14 (3): 1-8
        • Niklas A.
        • Sebraoui H.
        • Heβ E.
        • Wagner A.
        • Then Bergh F.
        Outcome measures for trials of remyelinating agents in multiple sclerosis: retrospective longitudinal analysis of visual evoked potential latency.
        Mult. Scler. 2009; 15: 68-74
        • Nourbakhsh B.
        • Azevedo C.
        • Nunan-Saah J.
        • Maghzi A.-.H.
        • Spain R.
        • Pelletier D.
        • Waubant E.
        Longitudinal associations between brain structural changes and fatigue in early MS.
        Mult. Scler. Relat. Disord. 2016; 5: 29-33
        • Odom J.V.
        • Bach M.
        • Brigell
        • et al.
        ISCEV standard for clinical visual evoked potentials: (2016 update).
        Doc. Ophthalmol. 2016; 133: 1-9
        • Palotai M.
        • Nazari A.
        • Cavallari M.
        • Healy B.C.
        • Glanz B.
        • Gold S.M.
        • Guttmann
        History of fatigue in multiple sclerosis is associated with grey matter atrophy.
        Sci. Rep. 2019; 9: 14781
        • Palotai M.
        • Guttmann C.R.G.
        Brain anatomical correlates of fatigue in multiple sclerosis.
        Mult. Scler. J. 2020; 26: 751-764
        • Palotai M.
        • Cavallari M.
        • Healy B.C.
        • Guttmann C.R.G
        A novel classification of fatigue in multiple sclerosis based on longitudinal assessments.
        Mult. Scler. J. 2020; 26: 725-734
        • Patrick E.
        • Christodoulou C.
        • Krupp L.B.
        • on behalf of the New York State MS Consortium
        Longitudinal correlates of fatigue in multiple sclerosis.
        Mult. Scler. J. 2009; 15: 258-261
        • Penner I.K.
        Evaluation of cognition and fatigue in multiple sclerosis: daily practice and future directions.
        Acta Neurol. Scand. 2016; 134: 19-23
        • Pokryszko-Dragan A.
        • Zagrajek M.
        • Slotwinski K.
        • Bilinska M.
        • Gruszka E.
        • Podemski R.
        Event-related potentials and cognitive performance in multiple sclerosis patients with fatigue.
        Neurol. Sci. 2016; 37: 1545-1556
        • Powell D.J.H.
        • Liossi C.
        • Schlotz W.
        • Moss-Morris R.
        Tracking daily fatigue fluctuations in multiple sclerosis: ecological momentary assessment provides unique insights.
        J. Behav. Med. 2017; 40: 772-783
        • Rietberg M.B.
        • Van Wegen E.E.H.
        • Kwakkel G.
        Measuring fatigue in patients with multiple sclerosis: reproducibility, responsiveness and concurrent validity of three Dutch self-report questionnaires.
        Disabil. Rehabil. 2010; 32: 1870-1876
        • Rocca M.A.
        • Meani A.
        • Riccitelli G.C.
        • Colombo B.
        • Rodegher M.
        • Falini A.
        • Filippi
        Abnormal adaptation over time of motor network recruitment in multiple sclerosis patients with fatigue.
        Mult. Scler. J. 2016; 22: 1144-1153
        • Rooney S.
        • Wood L.
        • Moffat F.
        • Paul L.
        Prevalence of fatigue and its association with clinical features in progressive and non-progressive forms of multiple sclerosis.
        Mult. Scler. Relat. J. 2019; 28: 276-282
        • Sepulcre J.
        • Masdeu J.C.
        • Goñi J.
        • Arrondo G.
        • Vélez de Mendizábal N.
        • Bejarano B.
        • Villoslada P.
        Fatigue in multiple sclerosis is associated with the disruption of frontal and parietal pathways.
        Mult. Scler. 2009; 15: 337-344
        • Smith J.
        • Bruce A.S.
        • Glusman M.
        • Thelen J.
        • Lynch S.
        • Bruce J.M
        Determining reliable change on the modified fatigue impact scale (5-item version).
        Mult. Scler. Relat. Disord. 2018; 20: 22-24
        • Spiteri S.
        • Hassa T.
        • Claros-Salina D.
        • Dettmers C.
        • Schoenfeld M.A.
        Neural correlates of effort-dependent and effort-independent cognitive fatigue components in patients with multiple sclerosis.
        Mult. Scler. J. 2019; 25: 256-266
        • Svenningsson A.
        • Falk E.
        • Celius E.G.
        • Fuchs S.
        • Schreiber K.
        • Berkö S.
        • Penner for the TYNERGY trial investigators
        Natalizumab treatment reduces fatigue in multiple sclerosis. Results from the TYNERGY trial; a study in the real life setting.
        PLoS One. 2013; 8: e58643
        • Tartaglia M.C.
        • Narayanan S.
        • Arnold D.L.
        Mental fatigue alters the pattern and increases the volume of cerebral activation required for a motor task in multiple sclerosis patients with fatigue.
        Eur. J. Neurol. 2008; 15: 413-419
        • Téllez N.
        • Río J.
        • Tintoré M.
        • Nos C.
        • Galán I.
        • Montalban X.
        Does the Modified Fatigue Impact Scale offer a more comprehensive assessment of fatigue in MS?.
        Mult. Scler. 2005; 11: 198-202
        • Tinnefeld M.
        • Treitz F.H.
        • Haase C.G.
        • Wilhelm H.
        • Daum I.
        • Faustmann P.M
        Attention and memory dysfunctions in mild multiple sclerosis.
        Eur. Arch. Psychiatry Clin. Neurosci. 2005; 255: 319-326
        • Tommasin S.
        • De Luca F.
        • Ferrante I.
        • Gurreri F.
        • Castelli L.
        • Ruggieri S.
        • Prosperini
        • Pantano P.
        • De Giglio
        Cognitive fatigability is a quantifiable distinct phenomenon in multiple sclerosis.
        J. Neuropsychol. 2020; 14: 370-383
        • Vucic S.
        • Burke D.
        • Kiernan M.C.
        Fatigue in multiple sclerosis: mechanisms and management.
        Clin. Neurophysiol. 2010; 121: 809-817
        • Walker L.A.S.
        • Berard J.A.
        • Berrigan L.I.
        • Rees L.M.
        • Freedman M.S
        Detecting cognitive fatigue in multiple sclerosis: methods matters.
        J. Neurol. Sci. 2012; 316: 86-92
        • Weinstock-Guttman B.
        • Baier M.
        • Stockton R.
        • Weinstock A.
        • Justinger T.
        • Munschauer F.
        • Rudick R.
        Pattern reversal visual evoked potentials as a measure of visual pathway pathology in multiple sclerosis.
        Mult. Scler. 2003; 9: 529-534
        • West K.
        • Sivakolundu D.
        • Maruthy G.
        • Zuppichini M.
        • Liu P.
        • Thomas B.
        • Rypma
        Baseline cerebral metabolism predicts fatigue and cognition in multiple sclerosis patients.
        NeuroImage Clin. 2020; 27 (Article)102281