Research Article| Volume 66, 104063, October 2022

Download started.


Relationship between zinc-related nutritional status and the progression of multiple sclerosis


      • The mean erythrocyte zinc concentration was above the recommendations in the groups.
      • The mean values of plasma zinc and superoxide dismutase activity were higher in the multiple sclerosis group.
      • In both the case and control groups, the mean superoxide dismutase activity was above the recommended level.
      • Superoxide dismutase activity correlated inversely with the number of outbreaks.



      Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system.


      To investigate plasma and erythrocyte zinc status and its relationship to MS.


      Cross-sectional study, including 98 participants, distributed in groups: case (MS, n = 49), diagnosed with MS and control (n = 49), matched by age and sex with the case group. Zinc was analyzed by flame atomic absorption spectrophotometry, and superoxide dismutase (SOD) activity by spectrophotometry.


      Mean plasma zinc was 94.6 (22.1) μg/dL for MS patients and 81.5 (31.3) μg/dL for control group, with statistical difference (p = 0.023). The mean erythrocyte zinc was 83.6 (41.6) µg/gHb for case group and 72.6 (31.5) µg/gHb for control. Erythrocyte SOD activity was above reference values, significantly different for MS patients (p = 0.003). There was a significant direct correlation between erythrocyte zinc and SOD (r = 0.835; p < 0.001). SOD showed inverse correlation with MS outbreaks (r = -0.317; p = 0.027).


      Patients with MS have normal plasma and elevated erythrocyte zinc. Erythrocyte zinc showed positive correlation with SOD, which correlated inversely to outbreaks.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Afifi Z.
        • Hassan A.
        • Abdelrahman N.
        • El Sayed A.
        • Salem M.
        Impact of nutrition counselling on multiple sclerosis patients nutritional status: randomized controlled clinical trial.
        Res. Sq. 2022; : 1-19
        • Alizadeh A.
        • Mehrpour O.
        • Nikkhah K.
        • et al.
        Comparison of serum concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls.
        Electron. Physician. 2016; 8: 2759-2764
        • Algül S.
        • Kapan O.
        • Bengü A.S.
        Investigation of some trace element levels in multiple sclerosis.
        Kastamonu Med. J. 2021; 1: 1-4
      1. BCTRIMS - Brazillian Committee for Treatment and Research Multiple Sclerosis, 2022. Available at: Accessed on: 23 june 2022.

        • Beier M.
        • D'Orio V.
        • Spat J.
        • Shuman M.
        • Foley F.W.
        Alcohol and substance use in multiple sclerosis.
        J. Neurol. Sci. 2014; 338: 122-127
      2. Brasil. Ministério da Saúde. Secretaria de Atenção Especializada a Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Portaria Conjunta n 7, de 3 de julho de 2019. Aprova o Protocolo Clínico e Diretrizes Terapêuticas da Esclerose Múltipla. Diário Oficial da República Federativa do Brasil, Brasília, DF, 2019, 19.

      3. Brasil. Resolução n° 466, de 12 de dezembro de 2012. Diário Oficial da União.

        • Bredholt M.
        • Frederiksen J.L.
        Zinc in multiple sclerosis: a systematic review and meta-analysis.
        ASN Neuro. 2016; 8: 1-9
        • Choi B.Y.
        • Jang B.G.
        • Kim J.H.
        • et al.
        Copper/zinc chelation by clioquinol reduces spinal cord white matter damage and behavioral deficits in a murine MOG-induced multiple sclerosis model.
        Neurobiol. Dis. 2013; 54: 382-391
        • Choi B.Y.
        • Jung J.W.
        • Suh S.W.
        The emerging role of zinc in the pathogenesis of multiple sclerosis.
        Int. J. Mol. Sci. 2017; 18: 2070
        • Cominetti C.
        • Cozzolino S.M.F.
        Bases Bioquímicas e Fisiológicas da Nutrição nas Diferentes Fases da Vida.
        Manole, Barueri, SP2020 (2ª edição)
        • Frederickson C.J.
        • Suh S.W.
        • Silva D.
        • Frederickson C.J.
        • Thompson R.B.
        Importance of zinc in the central nervous system: the zinc-containing neuron.
        J. Nutr. 2000; 130: 1471S-1483S
        • Gibson R.S
        Principles of Nutritional Assessment.
        Oxford University Press, New York1990
        • Guthier H.A.
        • Picciano M.F.
        Human Nutrition.
        Mosby, New York1994: 351-357
        • Han M.H.
        • Hwang S.I.
        • Roy D.B.
        • et al.
        Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets.
        Nature. 2008; 451: 1076-1081
        • Heydarpour P.
        • Manouchehrinia A.
        • Beiki O.
        • Mousavi S.E.
        • Abdolalizadeh A.
        • Lakeh M.M.
        • Sahraian M.A.
        Smoking and worsening disability in multiple sclerosis: a meta-analysis.
        Acta Neurol. Scand. 2018; 138: 62-69
        • Ho E.
        • Wong C.P.
        • King J.C.
        Impact of zinc on DNA integrity and age-related inflammation.
        Free Radic. Biol. Med. 2022; 178: 391-397
        • Jagodić J.
        • Rovčanin B.
        • Borković-Mitić S.
        • et al.
        Possível deficiência de zinco na população sérvia: exame de fluidos corporais, sangue total e tecidos sólidos.
        Environ. Sci. Pollut. Res. 2021; 28: 47439-47446
        • Johnson S.
        The possible role of gradual accumulation of copper, cadmium, lead and iron and gradual depletion of zinc, magnesium, selenium, vitamins B2, B6, D, and E and essential fatty acids in multiple sclerosis.
        Med. Hypotheses. 2000; 55: 239-241
        • Kaskow B.J.
        • Baecher-Allan C.
        Effector t cells in multiple sclerosis.
        Cold Spring Harb. Perspect. Med. 2018; 8: 1-15
        • Matar A.
        • Jennani S.
        • Abdallah H.
        • Mohsen N.
        • Borjac J.
        Serum iron and zinc levels in Lebanese multiple sclerosis patients.
        Acta Neurol. Taiwanica. 2020; 29: 5-11
        • Mezzaroba L.
        • Alfieri D.F.
        • Simão A.N.C
        • Vissoci Reiche E.M.
        The role of zinc, copper, manganese and iron in neurodegenerative diseases.
        Neurotoxicology. 2019; 74: 230-241
        • Morris D.R.
        • Levenson C.W.
        Zinc in traumatic brain injury: from neuroprotection to neurotoxicity.
        Curr. Opin. Clin. Nutr. Metab. Care. 2013; 16: 708-711
        • Nirooei E.
        • Kashani SMA
        • Owrangi S.
        • et al.
        Blood trace element status in multiple sclerosis: a systematic review and meta-analysis.
        Biol. Trace Elem. Res. 2022; 200: 13-26
        • Pawlitzki M.
        • Uebelhör J.
        • Sweeney-Reed C.M.
        • Stephanik H.
        • Hoffmann J.
        • Lux A.
        • Reinhold D.
        Lower serum zinc levels in patients with multiple sclerosis compared to healthy controls.
        Nutrients. 2018; 10: 967
        • Prakash A.
        • Bharti K.
        • Majeed A.B.A.
        Zinc: indications in brain disorders.
        Fundam. Clin. Pharmacol. 2015; 29: 131-149
        • Qi Z.
        • Liu K.J.
        The interaction of zinc and the blood-brain barrier under physiological and ischemic conditions.
        Toxicol. Appl. Pharmacol. 2019; 364: 114-119
        • Ruttkay-Nedecky B.
        • Nejdl L.
        • Gumulec J.
        • et al.
        The role of metallothionein in oxidative stress.
        Int. J. Mol. Sci. 2013; 14: 6044-6066
        • Sedighi B.
        • Ebrahimi H.A.
        • Haghdoost A.A.
        • Abotorabi M.
        Comparison of serum levels of copper and zinc among multiple sclerosis patients and control group.
        Iran. J. Neurol. 2013; 12: 125-128
        • Tanaka M.
        • Vécsei L.
        Monitoring the redox status in multiple sclerosis.
        Biomedicines. 2020; 8: 406
        • Tarlinton R.E.
        • Martynova E.
        • Rizvanov A.A.
        • Khaiboullina S.
        • Verma S.
        Role of viruses in the pathogenesis of multiple sclerosis.
        Viruses. 2020; 12: 643
        • Thompson A.J.
        • Baranzini S.E.
        • Geurts J.
        • Hemmer B.
        • Ciccarelli O.
        Multiple sclerosis.
        Lancet. 2018; 391: 1622-1636
        • Van Horssen J.
        • Schreibelt G.
        • Drexhage J.
        • et al.
        Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression.
        Free Radic. Biol. Med. 2008; 45: 1729-1737
        • Vasconcelos S.M.L.
        • Goulart M.O.F.
        • Moura J.B.D.F.
        • Manfredini V.
        • Benfato M.D.S.
        • Kubota L.T.
        Reactive oxygen and nitrogen species, antioxidants and markers of oxidative damage in human blood: main analytical methods for their determination.
        Quim. Nova. 2007; 30: 1323-1338
        • Walton C.
        • King R.
        • Rechtman L.
        • Kaye W.
        • Leray E.
        • Marrie R.A.
        • et al.
        Rising prevalence of multiple sclerosis worldwide: insights from the atlas of MS.
        Mult. Scler. J. 2020; 26: 1816-1821
        • Woolliams J.A.
        • Woolliams G.
        • Anderson P.H.
        • McMurray C.H.
        Variation in the activities of glutathione peroxidase and superoxide dismutase and in the concentration of copper in the blood in various breed crosses of sheep.
        Res. Vet. Sci. 1983; 34: 253-256