Advertisement

Investigation of serum adropin levels and its relationship with hypothalamic atrophy in patients with multiple sclerosis

      Abstract

      Objective

      Adropin is expressed in vascular endothelial cells and regulates nitric oxide (NO) bioavailability by upregulating nitric oxide. In recent years, some studies have revealed its relationship with the pathogenesis of multiple sclerosis (MS). Our aim in this study is to determine serum adropin levels in MS patients and to investigate adropin levels's relationship with hypothalamic atrophy.

      Methods

      A total of 80 people, 40 of whom had MS and 40 of whom were healthy volunteers, were included in the study. Serum samples were taken from all participants. Hypothalamus and pituitary diameters were calculated from magnetic resonance imaging of MS patients. The relationship between serum adropin levels and demographic characteristics, Expanded Disability Status Scale (EDSS), and hypothalamic atrophy were evaluated.

      Results

      The levels of adropin were 848,282±139,229 ng/L in patients with MS and 2957,108±284,034 ng/L in the healthy controls. MS patients had significantly lower levels of adropin than the healthy controls (p = 0.003). Adropin has the highest diagnostic value (AUC=0.874, (95% CI, 0,800–0,947) as cut-off value (838.00), sensitivity (80.43%) and specificity (70.64%) in the MS group. In the study, serum adropin levels were not significantly correlated with 3 ventricle diameter (3VD) and pituitary diameter (PD) size (p = 0,968) and no significant relationships were determined between adropin and other clinical parameters.

      Conclusion

      As a potential diagnostic marker, adropin levels were significantly lower in MS patients than in those without. Comprehensive studies are needed to verify this entity.

      Keywords

      Abbreviations:

      NO (Nitric oxide), MS (Multiple sclerosis), EDSS (Expanded Disability Status Scale), APC (Antigen presenting cells), COX1 (Cytochrome C oxidase 1), ENHO (Energy Homeostasis Associated), BBB (Blood-brain barrier), CSX (Cardiac syndrome X), eNOS (Endothelial nitric oxide synthase), NB3 (Neural recognition molecule 3), BMI (Body mass index), PD (Pituitary diameter), 3VD (3 ventricle diameter), HYP (Hypothalamus), VEGFR2 (Vascular endothelial growth factor receptor 2), ERK1/2 (Extracellular signal-regulated kinases 1/2), ISF (İnterstitial fluid), HPA (Hypothalamus-pituitary-adrenal), CRH (Corticotropin-releasing hormone), Glx / Cr (Glutamine/creatine), PVN (Paraventricular nucleus), ROS (Reactive oxygen species), Nrf2 (Nuclear factor erythroid 2), Keap1 (Kelch-like ECH associated protein 1), ARE (Antioxidant response element)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Compston A.
        • Coles A.
        Multiple sclerosis.
        Lancet. 2008; 372: 1502-1517
        • Bjartmar C.
        • Trapp B.D.
        Axonal degeneration and progressive neurologic disability in multiple sclerosis.
        Neurotox. Res. 2003; 5: 157-164
        • Nikić I.
        • Merkler D.
        • Sorbara C.
        • Brinkoetter M.
        • Kreutzfeldt M.
        • Bareyre F.M.
        • Brück W.
        • Bishop D.
        • Misgeld T.
        • Kerschensteiner M.
        A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis.
        Nat. Med. 2011; 17 (AprEpub 2011 Mar 27. PMID: 21441916): 495-499https://doi.org/10.1038/nm.2324
        • Mahad D.
        • Ziabreva I.
        • Lassmann H.
        • Turnbull D.
        Mitochondrial defects in acute multiple sclerosis lesions.
        Brain. 2008; 131: 1722-1735
        • Zambonin J.L.
        • Zhao C.
        • Ohno N.
        • et al.
        Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis.
        Brain. 2011; 134: 1901-1913
        • Kumar K.G.
        • Trevaskis J.L.
        • Lam D.D.
        • Sutton G.M.
        • Koza R.A.
        • et al.
        Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism.
        Cell Metab. 2008; 8: 468-481https://doi.org/10.1016/j.cmet.2008.10.011
        • Petersen T.N.
        • Brunak S.
        • von Heijne G.
        SignalP 4.0: discriminating signal peptides from transmembrane regions.
        Nat. Methods. 2011; 8: 785-786
        • Marczuk N.
        • Cecerska-Heryc E.
        • Jesionowska A.
        • Dolegowska B.
        Adropin-physiological and pathophysiological role.
        Postepy Hig. Med. Dosw. 2016; 70 (Sep 26): 981-988https://doi.org/10.5604/17322693.1220082
        • Wu L.
        • Fang J.
        • Chen L.
        • Zhao Z.
        • Luo Y.
        • et al.
        Low serum adropin is associatedwith coronary atherosclerosis in type 2 diabetic and non-diabetic patients.
        Clin. Chem. Lab Med. 2013; 9: 1-8
        • Gao S.
        • McMillan R.P.
        • Jacas J.
        • Zhu Q.
        • et al.
        Regulation of substrate oxidation preferences in muscle by the peptide hormone adropin.
        Diabetes. 2014; 63: 3242-3252
        • Wu L.
        • Fang J.
        • Chen L.
        • Zhao Z.
        • Luo Y.
        • et al.
        Low serum adropin is associated with coronary atherosclerosis in type 2 diabetic and non-diabetic patients.
        Clin. Chem. Lab Med. 2014; 52 (MayPMID: 24323892): 751-758https://doi.org/10.1515/cclm-2013-0844
        • Nergiz S.
        • Altinkaya S.O.
        • İ K.Ö.
        • Yuksel H.
        • Küçük M.
        • et al.
        Circulating adropin levels in patients with endometrium cancer.
        Gynecol. Endocrinol. 2015; 31 (Epub 2015 Jul 14. PMID: 26172926): 730-735https://doi.org/10.3109/09513590.2015.1065480
        • Celik A.
        • Balin M.
        • Kobat M.A.
        • Erdem K.
        • Baydas A.
        • et al.
        Deficiency of a new protein associated with cardiac syndrome X; called adropin.
        Cardiovasc. Ther. 2013; 31 (JunPMID: 23356444): 174-178https://doi.org/10.1111/1755-5922.12025
        • Altintas O.
        • Kumas M.
        • Altintas M.O
        Neuroprotective effect of ischemic preconditioning via modulating the expression of adropin and oxidative markers against transient cerebral ischemia in diabetic rats.
        Peptides. 2016; 79 (MayEpub 2016 Mar 25. PMID: 27020247): 31-38https://doi.org/10.1016/j.peptides.2016.03.011
        • Yang C.
        • DeMars K.M.
        • Candelario-Jalil E.
        Age-dependent decrease in adropin is associated with reduced levels of endothelial nitric oxide synthase and increased oxidative stress in the rat brain.
        Aging Dis. 2018; 9 (Apr 1PMID: 29896421; PMCID: PMC5963353): 322-330https://doi.org/10.14336/AD.2017.0523
        • Wong C.M.
        • Wang Y.
        • Lee J.T.
        • Huang Z.
        • Wu D.
        • et al.
        Adropin is a brain membrane-bound protein regulating physical activity via the NB-3/Notch signaling pathway in mice.
        J. Biol. Chem. 2014; 289 (Sep 12Epub 2014 Jul 29. PMID: 25074942; PMCID: PMC4162195): 25976-25986https://doi.org/10.1074/jbc.M114.576058
        • Aydin S.
        • Kuloglu T.
        • Aydin S.
        • Eren M.N.
        • Yilmaz M.
        • et al.
        Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes.
        Mol. Cell Biochem. 2013; 380 (AugEpub 2013 Apr 26. PMID: 23620340): 73-81https://doi.org/10.1007/s11010-013-1660-4
        • Yang C.
        • DeMars K.M.
        • Candelario-Jalil E.
        Age-dependent decrease in adropin is associated with reduced levels of endothelial nitric oxide synthase and increased oxidative stress in the rat brain.
        Aging Dis. 2018; 9 (Apr 1PMID: 29896421; PMCID: PMC5963353): 322-330https://doi.org/10.14336/AD.2017.0523
        • Goulding N.J.
        • Guyre P.M.
        Glucocorticoids, lipocortins and the immune response.
        Curr. Opin. Immunol. 1993; 5 (Google ScholarCrossrefPubMed. doi.org/10.1016/0952-7915(93)90089-B.Neurol Res. 2017 Apr;39(4):323-330. doi: 10.1080/01616412.2016.1275460. Epub 2017 Feb): 108-113
        • Kantorová E.
        • Poláček H.
        • Bittšanský M.
        • Baranovičová E.
        • Hnilicová P.
        • et al.
        Hypothalamic damage in multiple sclerosis correlates with disease activity, disability, depression, and fatigue.
        Neurol. Res. 2017; 39 (AprEpub 2017 Feb 13. PMID: 28191860): 323-330https://doi.org/10.1080/01616412.2016.1275460
        • Polacek H.
        • Kantorova E.
        • Hnilicova P.
        • Grendar M.
        • Zelenak K.
        • et al.
        Increased glutamate and deep brain atrophy can predict the severity of multiple sclerosis.
        Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2019; 163 (FebEpub 2018 Jul 16. PMID: 30150790): 45-53https://doi.org/10.5507/bp.2018.036
        • Loewen S.P.
        • Ferguson A.V.
        Adropin acts in the rat paraventricular nucleus to influence neuronal excitability.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017; 312 (Apr 1Epub 2017 Jan 18. PMID: 28100478): R511-R519https://doi.org/10.1152/ajpregu.00517.2016
        • Ma Q.
        Transcriptional responses to oxidative stress: pathological and toxicological implications.
        Pharmacol. Ther. 2010; 125 (MarEpub 2009 Nov 27. PMID: 19945483): 376-393https://doi.org/10.1016/j.pharmthera.2009.11.004
        • Ma Q.
        Role of nrf2 in oxidative stress and toxicity.
        Annu. Rev. Pharmacol. Toxicol. 2013; 53 (PMID: 23294312; PMCID: PMC4680839): 401-426https://doi.org/10.1146/annurev-pharmtox-011112-140320
        • Gupte A.A.
        • Lyon C.J.
        • Hsueh W.A.
        Nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2), a key regulator of the antioxidant response to protect against atherosclerosis and nonalcoholic steatohepatitis.
        Curr. Diab. Rep. 2013; 13 (JunPMID: 23475581): 362-371https://doi.org/10.1007/s11892-013-0372-1
        • Hayes J.D.
        • McMahon M.
        NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer.
        Trends Biochem. Sci. 2009; 34 (AprEpub 2009 Mar 25. PMID: 19321346): 176-188https://doi.org/10.1016/j.tibs.2008.12.008
        • Stewart D.
        • Killeen E.
        • Naquin R.
        • Alam S.
        • Alam J.
        Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium.
        J. Biol. Chem. 2003; 278 (Jan 24Epub 2002 Nov 18. PMID: 12441344): 2396-2402https://doi.org/10.1074/jbc.M209195200
        • Lee J.M.
        • Li J.
        • Johnson D.A.
        • Stein T.D.
        • Kraft A.D.
        • et al.
        Nrf2, a multi-organ protector?.
        FASEB J. 2005; 19 (JulPMID: 15985529): 1061-1066https://doi.org/10.1096/fj.04-2591hyp
        • Chen X.
        • Xue H.
        • Fang W.
        • Chen K.
        • Chen S.
        • et al.
        Adropin protects against liver injury in nonalcoholic steatohepatitis via the Nrf2 mediated antioxidant capacity.
        Redox Biol. 2019; 21 (FebEpub 2018 Dec 6. PMID: 30684890; PMCID: PMC6351233)101068https://doi.org/10.1016/j.redox.2018.101068
        • Adler S.H.
        • Chiffoleau E.
        • Xu L.
        • Dalton N.M.
        • Burg J.M.
        • et al.
        Notch signaling augments T cell responsiveness by enhancing CD25 expression.
        J. Immunol. 2003; 171 (Sep 15PMID: 12960312): 2896-2903https://doi.org/10.4049/jimmunol.171.6.2896
        • Jurynczyk M.
        • Jurewicz A.
        • Raine C.S.
        • Selmaj K.
        Notch3 inhibition in myelin-reactive T cells down-regulates protein kinase C theta and attenuates experimental autoimmune encephalomyelitis.
        J. Immunol. 2008; 180 (Feb 15PMID: 18250475): 2634-2640https://doi.org/10.4049/jimmunol.180.4.2634
        • Kofler N.M.
        • Cuervo H.
        • Uh M.K.
        • Kitajewski J.
        Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL and results in arteriovenous malformations.
        Sci. Rep. 2015; 5: 16449https://doi.org/10.1038/srep16449
        • Butler A.A.
        • Tam C.S.
        • Stanhope K.L.
        • Wolfe B.M.
        • Ali M.R.
        • et al.
        Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans.
        J. Clin. Endocrinol. Metab. 2012; 97 (OctEpub 2012 Aug 7. PMID: 22872690; PMCID: PMC3462944): 3783-3791https://doi.org/10.1210/jc.2012-2194
        • Chen S.
        • Zeng K.
        • Liu Q.C.
        • Guo Z.
        • Zhang S.
        • et al.
        Adropin deficiency worsens HFD-induced metabolic defects.
        Cell Death Dis. 2017; 8 (Aug 24PMID: 28837146; PMCID: PMC5596552): e3008https://doi.org/10.1038/cddis.2017.362
        • Gao F.
        • Fang J.
        • Chen F.
        • Wang C.
        • Chen S.
        • et al.
        Enho mutations causing low adropin: a possible pathomechanism of MPO-ANCA associated lung injury.
        EBioMedicine. 2016; 9: 324-335https://doi.org/10.1016/j.ebiom.2016.05.036
        • Pulli B.
        • Bure L.
        • Wojtkiewicz G.R.
        • Iwamoto Y.
        • Ali M.
        • et al.
        Multiple sclerosis: myeloperoxidase immunoradiology improves detection of acute and chronic disease in experimental model.
        Radiology. 2015; 275 (MayEpub 2014 Dec 10. PMID: 25494298; PMCID: PMC4455671): 480-489https://doi.org/10.1148/radiol.14141495