Advertisement
Research Article| Volume 65, 103838, September 2022

Download started.

Ok

Clinical and MRI predictors of cognitive decline in patients with relapsing-remitting multiple sclerosis: A 2-year longitudinal study

      Highlights

      • Few studies have investigated the correlates of cognitive decline in RRMS.
      • 35.5% of RRMS patients were classified as cognitively-declining.
      • RRMS patients with more disease severity, higher GM atrophy, and increase WM lesion volume are more susceptible to cognitive decline.

      Abstract

      Background

      In this study, we conducted a prospective 2-year cohort of patients with RRMS and healthy controls (HCs) to investigate the rate and clinical/imaging predictors of cognitive decline in relapsing-remitting multiple sclerosis (RRMS).

      Methods

      A total of 107 patients with clinically definite RRMS and 74 HCs were recruited at Hebei General Hospital, Shijiazhuang, Hebei. Patients were assessed with the Minimal Assessment of Cognitive Function in MS (MACFIMS) at baseline and 2-year follow-up visits and were classified into cognitively-declining and cognitively-stable RRMS. Baseline demographic, clinical, and imaging parameters were inserted in separate multivariate regression models to investigate the predictive power of these factors for future cognitive decline.

      Results

      Based on the classification protocol and the data from HCs, 35.5% of RRMS patients were categorized as cognitively-declining. The multivariate logistic regression analyses demonstrated that disease duration, EDSS, and average disease attack/year were the clinical parameters with significant predictive value for future cognitive decline (R2=0.344). Within whole-brain MRI measures, total brain, cortical grey matter (GM), and subcortical GM volumes could significantly predict cognitive decline (R2=0.566). WM lesion volume could also significantly predict cognitive decline (R2=0.645). Within lobar brain measures, frontal and temporal lobe volumes (R2=0.666), and finally within subcortical GM volumes, hippocampus, pallidum, putamen, and thalamus were predictive of future cognitive decline (R2=0.732).

      Conclusions

      Our findings suggest that RRMS patients with more disease severity, higher GM atrophy, and increased WM lesion volume are more susceptible to cognitive decline. Further studies could assess the underpinnings of cortical and subcortical atrophy that lead to cognitive decline in RRMS patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Azevedo C.J.
        • Cen S.Y.
        • Khadka S.
        • Liu S.
        • Kornak J.
        • Shi Y.
        • Zheng L.
        • Hauser S.L.
        • Pelletier D.
        Thalamic atrophy in multiple sclerosis: a magnetic resonance imaging marker of neurodegeneration throughout disease.
        Ann. Neurol. 2018; 83: 223-234
        • Benedict R.H.
        • Bakshi R.
        • Simon J.H.
        • Priore R.
        • Miller C.
        • Munschauer F.
        Frontal cortex atrophy predicts cognitive impairment in multiple sclerosis.
        J. Neuropsychiatry Clin. Neurosci. 2002; 14: 44-51
        • Benedict R.H.
        • Cookfair D.
        • Gavett R.
        • Gunther M.
        • Munschauer F.
        • Garg N.
        • Weinstock-Guttman B.
        Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS).
        J. Int. Neuropsychol. Soc. 2006; 12: 549-558
        • Benedict R.H.
        • Zivadinov R.
        Risk factors for and management of cognitive dysfunction in multiple sclerosis.
        Nat. Rev. Neurol. 2011; 7: 332-342
        • Benedict R.H.B.
        • Amato M.P.
        • DeLuca J.
        • Geurts J.J.G.
        Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues.
        Lancet Neurol. 2020; 19: 860-871
        • Bergsland N.
        • Horakova D.
        • Dwyer M.G.
        • Dolezal O.
        • Seidl Z.K.
        • Vaneckova M.
        • Krasensky J.
        • Havrdova E.
        • Zivadinov R.
        Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis.
        AJNR Am. J. Neuroradiol. 2012; 33: 1573-1578
        • Bisecco A.
        • Capuano R.
        • Caiazzo G.
        • d'Ambrosio A.
        • Docimo R.
        • Cirillo M.
        • Russo A.
        • Altieri M.
        • Bonavita S.
        • Rocca M.A.
        • Filippi M.
        • Tedeschi G.
        • Gallo A.
        Regional changes in thalamic shape and volume are related to cognitive performance in multiple sclerosis.
        Mult. Scler. 2021; 27: 134-138
      1. Curti, E., Graziuso, S., Tsantes, E., Crisi, G., Granella, F., 2018. Correlation between cortical lesions and cognitive impairment in multiple sclerosis. 8(6), e00955.

        • Damjanovic D.
        • Valsasina P.
        • Rocca M.A.
        • Stromillo M.L.
        • Gallo A.
        • Enzinger C.
        • Hulst H.E.
        • Rovira A.
        • Muhlert N.
        • De Stefano N.
        • Bisecco A.
        • Fazekas F.
        • Arévalo M.J.
        • Yousry T.A.
        • Filippi M.
        Hippocampal and deep gray matter nuclei atrophy Is relevant for explaining cognitive impairment in MS: a multicenter study.
        AJNR Am. J. Neuroradiol. 2017; 38: 18-24
        • Deloire M.S.
        • Ruet A.
        • Hamel D.
        • Bonnet M.
        • Dousset V.
        • Brochet B.
        MRI predictors of cognitive outcome in early multiple sclerosis.
        Neurology. 2011; 76: 1161-1167
        • DeLuca J.
        • Chiaravalloti N.D.
        • Sandroff B.M.
        Treatment and management of cognitive dysfunction in patients with multiple sclerosis.
        Nat. Rev. Neurol. 2020; 16: 319-332
        • Eijlers A.J.C.
        • van Geest Q.
        • Dekker I.
        • Steenwijk M.D.
        • Meijer K.A.
        • Hulst H.E.
        • Barkhof F.
        • Uitdehaag B.M.J.
        • Schoonheim M.M.
        • Geurts J.J.G.
        Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study.
        Brain. 2018; 141: 2605-2618
        • Elshebawy H.
        • Fahmy E.M.
        • Elfayoumy N.M.
        • Abdelalim A.M.
        • Ismail R.S.
        Clinical predictors to cognitive impairment in multiple sclerosis patients.
        Egypt. J. Neurol. Psychiatry Neurosurg. 2021; 57: 38
        • Filippi M.
        • Preziosa P.
        • Copetti M.
        • Riccitelli G.
        • Horsfield M.A.
        • Martinelli V.
        • Comi G.
        • Rocca M.A.
        Gray matter damage predicts the accumulation of disability 13 years later in MS.
        Neurology. 2013; 81: 1759-1767
        • Foong J.
        • Rozewicz L.
        • Quaghebeur G.
        • Davie C.A.
        • Kartsounis L.D.
        • Thompson A.J.
        • Miller D.H.
        • Ron M.A.
        Executive function in multiple sclerosis. The role of frontal lobe pathology.
        Brain. 1997; 120: 15-26
        • Haider L.
        • Simeonidou C.
        • Steinberger G.
        • Hametner S.
        • Grigoriadis N.
        • Deretzi G.
        • Kovacs G.G.
        • Kutzelnigg A.
        • Lassmann H.
        • Frischer J.M.
        Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron.
        J. Neurol. Neurosurg. Psychiatry. 2014; 85: 1386
        • Karavasilis E.
        • Christidi F.
        • Velonakis G.
        • Tzanetakos D.
        • Zalonis I.
        • Potagas C.
        • Andreadou E.
        • Efstathopoulos E.
        • Kilidireas C.
        • Kelekis N.
        • Evdokimidis I.
        Hippocampal structural and functional integrity in multiple sclerosis patients with or without memory impairment: a multimodal neuroimaging study.
        Brain Imaging Behav. 2019; 13: 1049-1059
        • Minagar A.
        • Barnett M.H.
        • Benedict R.H.
        • Pelletier D.
        • Pirko I.
        • Sahraian M.A.
        • Frohman E.
        • Zivadinov R.
        The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects.
        Neurology. 2013; 80: 210-219
        • Rocca M.A.
        • Valsasina P.
        • Leavitt V.M.
        • Rodegher M.
        • Radaelli M.
        • Riccitelli G.C.
        • Martinelli V.
        • Martinelli-Boneschi F.
        • Falini A.
        • Comi G.
        • Filippi M.
        Functional network connectivity abnormalities in multiple sclerosis: correlations with disability and cognitive impairment.
        Mult. Scler. 2018; 24: 459-471
        • Rojas J.I.
        • Murphy G.
        • Sanchez F.
        • Patrucco L.
        • Fernandez M.C.
        • Miguez J.
        • Funes J.
        • Golimstok A.
        • Cristiano E.
        Thalamus volume change and cognitive impairment in early relapsing-remitting multiple sclerosis patients.
        Neuroradiol. J. 2018; 31: 350-355
        • Rovaris M.
        • Filippi M.
        • Falautano M.
        • Minicucci L.
        • Rocca M.A.
        • Martinelli V.
        • Comi G.
        Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis.
        Neurology. 1998; 50: 1601-1608
        • Schoonheim M.M.
        • Hulst H.E.
        • Brandt R.B.
        • Strik M.
        • Wink A.M.
        • Uitdehaag B.M.
        • Barkhof F.
        • Geurts J.J.
        Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis.
        Neurology. 2015; 84: 776-783
        • Schoonheim M.M.
        • Vigeveno R.M.
        • Rueda Lopes F.C.
        • Pouwels P.J.
        • Polman C.H.
        • Barkhof F.
        • Geurts J.J.
        Sex-specific extent and severity of white matter damage in multiple sclerosis: implications for cognitive decline.
        Hum. Brain Mapp. 2014; 35: 2348-2358
        • Sperling R.A.
        • Guttmann C.R.
        • Hohol M.J.
        • Warfield S.K.
        • Jakab M.
        • Parente M.
        • Diamond E.L.
        • Daffner K.R.
        • Olek M.J.
        • Orav E.J.
        • Kikinis R.
        • Jolesz F.A.
        • Weiner H.L.
        Regional magnetic resonance imaging lesion burden and cognitive function in multiple sclerosis: a longitudinal study.
        Arch. Neurol. 2001; 58: 115-121
        • Steenwijk M.D.
        • Daams M.
        • Pouwels P.J.
        • Balk L.J.
        • Tewarie P.K.
        • Killestein J.
        • Uitdehaag B.M.
        • Geurts J.J.
        • Barkhof F.
        • Vrenken H.
        What explains gray matter atrophy in long-standing multiple sclerosis?.
        Radiology. 2014; 272: 832-842
        • Steenwijk M.D.
        • Geurts J.J.
        • Daams M.
        • Tijms B.M.
        • Wink A.M.
        • Balk L.J.
        • Tewarie P.K.
        • Uitdehaag B.M.
        • Barkhof F.
        • Vrenken H.
        • Pouwels P.J.
        Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant.
        Brain. 2016; 139: 115-126
        • Summers M.
        • Fisniku L.
        • Anderson V.
        • Miller D.
        • Cipolotti L.
        • Ron M.
        Cognitive impairment in relapsing-remitting multiple sclerosis can be predicted by imaging performed several years earlier.
        Mult. Scler. 2008; 14: 197-204
        • Sumowski J.F.
        • Rocca M.A.
        • Leavitt V.M.
        • Riccitelli G.
        • Sandry J.
        • DeLuca J.
        • Comi G.
        • Filippi M.
        Searching for the neural basis of reserve against memory decline: intellectual enrichment linked to larger hippocampal volume in multiple sclerosis.
        Eur. J. Neurol. 2016; 23: 39-44
        • Tewarie P.
        • Schoonheim M.M.
        • Stam C.J.
        • van der Meer M.L.
        • van Dijk B.W.
        • Barkhof F.
        • Polman C.H.
        • Hillebrand A.
        Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis.
        PLoS One. 2013; 8: e69318
        • Tortorella C.
        • Romano R.
        • Direnzo V.
        • Taurisano P.
        • Zoccolella S.
        • Iaffaldano P.
        • Fazio L.
        • Viterbo R.
        • Popolizio T.
        • Blasi G.
        • Bertolino A.
        • Trojano M.
        Load-dependent dysfunction of the putamen during attentional processing in patients with clinically isolated syndrome suggestive of multiple sclerosis.
        Mult. Scler. 2013; 19: 1153-1160
        • van Geest Q.
        • Hulst H.E.
        • Meijer K.A.
        • Hoyng L.
        • Geurts J.J.G.
        • Douw L.
        The importance of hippocampal dynamic connectivity in explaining memory function in multiple sclerosis.
        Brain Behav. 2018; 8: e00954
        • Wallin M.T.
        • Culpepper W.J.
        • Nichols E.
        • Bhutta Z.A.
        • Gebrehiwot T.T.
        • Hay S.I.
        • Khalil I.A.
        • Krohn K.J.
        • Liang X.
        • Naghavi M.
        • Mokdad A.H.
        • Nixon M.R.
        • Reiner R.C.
        • Sartorius B.
        • Smith M.
        • Topor-Madry R.
        • Werdecker A.
        • Vos T.
        • Feigin V.L.
        • Murray C.J.L.
        Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016.
        Lancet Neurol. 2019; 18: 269-285
        • Wattjes M.P.
        • Rovira À.
        • Miller D.
        • Yousry T.A.
        • Sormani M.P.
        • de Stefano M.P.
        • Tintoré M.
        • Auger C.
        • Tur C.
        • Filippi M.
        • Rocca M.A.
        • Fazekas F.
        • Kappos L.
        • Polman C.
        • Frederik B.
        • Xavier M.
        Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis–establishing disease prognosis and monitoring patients.
        Nat. Rev. Neurol. 2015; 11: 597-606
        • Wybrecht D.
        • Reuter F.
        • Pariollaud F.
        • Zaaraoui W.
        • Le Troter A.
        • Rico A.
        • Confort-Gouny S.
        • Soulier E.
        • Guye M.
        • Maarouf A.
        • Ranjeva J.P.
        • Pelletier J.
        • Audoin B.
        New brain lesions with no impact on physical disability can impact cognition in early multiple sclerosis: a ten-year longitudinal study.
        PLoS One. 2017; 12e0184650
        • Zivadinov R.
        • Sepcic J.
        • Nasuelli D.
        • De Masi R.
        • Bragadin L.M.
        • Tommasi M.A.
        • Zambito-Marsala S.
        • Moretti R.
        • Bratina A.
        • Ukmar M.
        • Pozzi-Mucelli R.S.
        • Grop A.
        • Cazzato G.
        • Zorzon M.
        A longitudinal study of brain atrophy and cognitive disturbances in the early phase of relapsing-remitting multiple sclerosis.
        J. Neurol. Neurosurg. Psychiatry. 2001; 70: 773-780