Advertisement

Promising role of temelimab in multiple sclerosis treatment

      Highlights

      • Multiple sclerosis involves immune-mediated demyelination of nerve fibers and neurons leading to permanent nerve damage.
      • Role of MS-associated retrovirus envelope protein (MSRV-Env) is suggested in the pathogenesis of MS.
      • Temelimab is a humanized IgG4 monoclonal antibody (mAb) that targets the MSRV-Env protein.
      • Clinical trials demonstrate that the drug is safe as well as favourable for use in MS patients.

      Abstract

      Background

      Multiple Sclerosis (MS) is a chronic debilitating neurological disease affecting young adults. The disease involves immune-mediated demyelination of nerve fibers and neurons that leads to disruption of brain-body communication, leading to permanent nerve damage. MS-associated retrovirus envelope protein (MSRV-Env) has been detected in the blood and lesions of MS patients, and its role is suggested in the pathogenesis of MS. Temelimab is a humanized IgG4 monoclonal antibody (mAb) that targets the MSRV-Env protein and neutralizes its action. Several clinical trials have been conducted to evaluate the effectiveness of the drug in MS.

      Materials and Methods

      A systemic search was conducted from electronic databases (PubMed/Medline, Cochrane Library, and Google Scholar) from inception to 11th sept 2021. All statistical analysis was conducted in Review Manager 5.4.1. Studies meeting inclusion criteria were selected. Those studies were selected which compared Temelimab therapy to inactive control. The primary outcome of interest was drug safety and efficacy; information about immunogenicity was also included. Random-effect model was used to pool the studies, and the result was reported in the risk ratio (RR) with corresponding 95% Confidence interval (CI).

      Results

      Phase I, Phase II-a and Phase II-b trials demonstrate the safety and effectiveness of Temelimab. Our analysis showed statistically non-significant Risk Ratio (RR) of Adverse events in Temelimab group than that in placebo group (1.01 [0.70,1.46]; p-value = 0.94; I2 = 0%) . Considering the effect of Temelimab on brain lesions, pooled result showed statistically significant Risk Ratio (RR) of brain lesions in placebo group than that in Temelimab group (0.75 [0.69,0.81), p-value < 0.00001, I2 = 0%

      Conclusion

      Qualitative and quantitative analysis of the trials assessing the safety and efficacy of Temelimab demonstrate that the drug is safe as well as favourable for use in MS patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arru G.
        • Leoni S.
        • Pugliatti M.
        • Mei A.
        • Serra C.
        • Delogu L.G.
        • Manetti R.
        • Dolei A.
        • Sotgiu S.
        • Mameli G.
        Natalizumab inhibits the expression of human endogenous retroviruses of the W family in multiple sclerosis patients: a longitudinal cohort study.
        Mult. Scler. 2014 Feb; 20 (Epub 2013 Jul 22. PMID: 23877972): 174-182https://doi.org/10.1177/1352458513494957
      1. Assessing the HERV-W Env ANtagonist GNbAC1 for Evaluation in an Open Label Long-term Safety Study in Patients with Multiple Sclerosis (ANGEL-MS). [online] Clinicaltrials.gov. 2020. Available at: <https://clinicaltrials.gov/ct2/show/NCT03239860≥.

        • Blond J.L.
        • Beseme F.
        • Duret L.
        • Bouton O.
        • Bedin F.
        • Perron H.
        • et al.
        Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family.
        J. Virol. 1999; 73: 1175-1185
        • Ciccone A.
        • Beretta S.
        • Brusaferri F.
        • Galea I.
        • Protti A.
        • Spreafico C.
        Corticosteroids for the long-term treatment in multiple sclerosis.
        Cochrane Database Syst Rev. 2008 Jan 23; (PMID: 18254098)CD006264https://doi.org/10.1002/14651858.CD006264.pub2
      2. Clinical Trial Assessing the HERV-W Env Antagonist GNbAC1 for Efficacy in MS. [online] Clinicaltrials.gov. 2020. Available at: <https://clinicaltrials.gov/ct2/show/NCT02782858?term=CHANGE-MS>.

        • Compston A.
        • Coles A.
        Multiple sclerosis.
        Lancet. 2008 Oct 25; 372 (PMID: 18970977): 1502-1517https://doi.org/10.1016/S0140-6736(08)61620-7
        • Cumpston M.
        • Li T.
        • Page M.J.
        • Chandler J.
        • Welch V.A.
        • Higgins J.P.
        • Thomas J.
        Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions.
        Cochrane Database Syst Rev. 2019 Oct 3; 10 (PMID: 31643080)ED000142https://doi.org/10.1002/14651858.ED000142
        • Curtin F.
        • Hartung H.P.
        Novel therapeutic options for multiple sclerosis.
        Expert Rev Clin Pharmacol. 2014 Jan; 7 (Epub 2013 Dec 10. PMID: 24325127): 91-104https://doi.org/10.1586/17512433.2014.865517
        • Curtin F.
        • Lang A.B.
        • Perron H.
        • Laumonier M.
        • Vidal V.
        • Porchet H.C.
        • Hartung H.P.
        GNbAC1, a humanized monoclonal antibody against the envelope protein of multiple sclerosis-associated endogenous retrovirus: a first-in-humans randomized clinical study.
        Clin. Ther. 2012 Dec; 34 (Epub 2012 Nov 29. PMID: 23200102): 2268-2278https://doi.org/10.1016/j.clinthera.2012.11.006
        • Curtin F.
        • Perron H.
        • Kromminga A.
        • Porchet H.
        • Lang A.B.
        Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein.
        MAbs. 2015; 7 (PMID: 25427053; PMCID: PMC4623301): 265-275https://doi.org/10.4161/19420862.2014.985021
        • Curtin F.
        • Vidal V.
        • Bernard C.
        • Kromminga A.
        • Lang A.B.
        • Porchet H.
        Serum pharmacokinetics and cerebrospinal fluid concentration analysis of the new IgG4 monoclonal antibody GNbAC1 to treat multiple sclerosis: a Phase 1 study.
        MAbs. 2016 Jul; 8 (Epub 2016 Mar 30. PMID: 27030142; PMCID: PMC4968100): 854-860https://doi.org/10.1080/19420862.2016.1168956
        • Derfuss T.
        • Curtin F.
        • Guebelin C.
        • Bridel C.
        • Rasenack M.
        • Matthey A.
        • Du Pasquier R.
        • Schluep M.
        • Desmeules J.
        • Lang A.B.
        • Perron H.
        • Faucard R.
        • Porchet H.
        • Hartung H.P.
        • Kappos L.
        • Lalive P.H
        A phase IIa randomized clinical study testing GNbAC1, a humanized monoclonal antibody against the envelope protein of multiple sclerosis associated endogenous retrovirus in multiple sclerosis patients - a twelve month follow-up.
        J. Neuroimmunol. 2015 Aug 15; 285 (Epub 2015 May 20. PMID: 26198921): 68-70https://doi.org/10.1016/j.jneuroim.2015.05.019
        • Derfuss T.
        • Curtin F.
        • Guebelin C.
        • Bridel C.
        • Rasenack M.
        • Matthey A.
        • Du Pasquier R.
        • Schluep M.
        • Desmeules J.
        • Lang A.B.
        • Perron H.
        • Faucard R.
        • Porchet H.
        • Hartung H.P.
        • Kappos L.
        • Lalive P.H
        A phase IIa randomised clinical study of GNbAC1, a humanised monoclonal antibody against the envelope protein of multiple sclerosis-associated endogenous retrovirus in multiple sclerosis patients.
        Mult. Scler. 2015 Jun; 21 (Epub 2014 Nov 12. PMID: 25392325): 885-893https://doi.org/10.1177/1352458514554052
        • Diebold M.
        • Derfuss T.
        The monoclonal antibody GNbAC1: targeting human endogenous retroviruses in multiple sclerosis.
        Ther Adv Neurol Disord. 2019 Mar 7; 12 (PMID: 30873219; PMCID: PMC6407165)1756286419833574https://doi.org/10.1177/1756286419833574
        • Hartung H.P.
        • Derfuss T.
        • Cree B.A.
        • Sormani M.P.
        • Selmaj K.
        • Stutters J.
        • Prados F.
        • MacManus D.
        • Schneble H.M.
        • Lambert E.
        • Porchet H.
        • Glanzman R.
        • Warne D.
        • Curtin F.
        • Kornmann G.
        • Buffet B.
        • Kremer D.
        • Küry P.
        • Leppert D.
        • Rückle T.
        • Barkhof F.
        Efficacy and safety of temelimab in multiple sclerosis: results of a randomized phase 2b and extension study.
        Mult. Scler. 2021 Jul 9; (Epub ahead of print. PMID: 34240656)13524585211024997https://doi.org/10.1177/13524585211024997
      3. How Does Multiple Sclerosis Affect the Brain? An Expert Explains. [online] Healthline; June 9, 2020. Available at: https://www.healthline.com/health/multiple-sclerosis/brain-cognitive-effects-ate#3.

        • Hutton B.
        • Salanti G.
        • Caldwell D.M.
        • Chaimani A.
        • Schmid C.H.
        • Cameron C.
        • Ioannidis J.P.
        • Straus S.
        • Thorlund K.
        • Jansen J.P.
        • Mulrow C.
        • Catalá-López F.
        • Gøtzsche P.C.
        • Dickersin K.
        • Boutron I.
        • Altman D.G.
        • Moher D.
        The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations.
        Ann. Intern. Med. 2015 Jun 2; 162 (PMID: 26030634): 777-784https://doi.org/10.7326/M14-2385
        • Klaver R.
        • De Vries H.E.
        • Schenk G.J.
        • Geurts J.J.
        Grey matter damage in multiple sclerosis: a pathology perspective.
        Prion. 2013 Jan-Feb; 7 (Epub 2013 Jan 1. PMID: 23324595; PMCID: PMC3609053): 66-75https://doi.org/10.4161/pri.23499
        • Kornmann G.
        • Temelimab Curtin F.
        an IgG4 Anti-Human Endogenous Retrovirus Monoclonal Antibody: an Early Development Safety Review.
        Drug Saf. 2020 Dec; 43 (PMID: 32794123): 1287-1296https://doi.org/10.1007/s40264-020-00988-3
        • Kremer D.
        • Schichel T.
        • Förster M.
        • Tzekova N.
        • Bernard C.
        • van der Valk P.
        • van Horssen J.
        • Hartung H.-.P.
        • Perron H.
        • Küry P.
        Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation.
        Ann Neurol. 2013; 74: 721-732https://doi.org/10.1002/ana.23970
        • Kremer D.
        • Gruchot J.
        • Weyers V.
        • Oldemeier L.
        • Göttle P.
        • Healy L.
        • Ho Jang J.
        • Kang T.
        • Xu Y.
        • Volsko C.
        • Dutta R.
        • Trapp B.D.
        • Perron H.
        • Hartung H.P.
        Küry P. pHERV-W envelope protein fuels microglial cell-dependent damage of myelinated axons in multiple sclerosis.
        Proc Natl Acad Sci U S A. 2019 Jul 23; 116 (Epub 2019 Jun 18. PMID: 31213545; PMCID: PMC6660731): 15216-15225https://doi.org/10.1073/pnas.1901283116
        • Lunde H.M.B.
        • Assmus J.
        • Myhr K.M.
        • Bø L.
        • Grytten N.
        Survival and cause of death in multiple sclerosis: a 60-year longitudinal population study.
        J. Neurol. Neurosurg. Psychiatry. 2017 Aug; 88 (Epub 2017 Apr 1. PMID: 28365589; PMCID: PMC5537547): 621-625https://doi.org/10.1136/jnnp-2016-315238
        • Madeira A.
        • Burgelin I.
        • Perron H.
        • Curtin F.
        • Lang A.B.
        • Faucard R.
        MSRV envelope protein is a potent, endogenous and pathogenic agonist of human toll-like receptor 4: relevance of GNbAC1 in multiple sclerosis treatment.
        J. Neuroimmunol. 2016 Feb 15; 291 (Epub 2015 Dec 11. PMID: 26857492): 29-38https://doi.org/10.1016/j.jneuroim.2015.12.006
        • Mameli G.
        • Serra C.
        • Astone V.
        • Castellazzi M.
        • Poddighe L.
        • Fainardi E.
        • Neri W.
        • Granieri E.
        • Dolei A.
        Inhibition of multiple-sclerosis-associated retrovirus as biomarker of interferon therapy.
        J. Neurovirol. 2008 Jan; 14 (PMID: 18300077): 73-77https://doi.org/10.1080/13550280701801107
        • Morandi E.
        • Tanasescu R.
        • Tarlinton R.E.
        • Constantinescu C.S.
        • Zhang W.
        • Tench C.
        • Gran B.
        The association between human endogenous retroviruses and multiple sclerosis: a systematic review and meta-analysis.
        PLoS One. 2017 Feb 16; 12 (PMID: 28207850; PMCID: PMC5313176)e0172415https://doi.org/10.1371/journal.pone.0172415
      4. Multiple sclerosis - Symptoms and causes. [online] Mayo Clinic; June 12, 2020. Available at: https://www.mayoclinic.org/diseases-conditions/multiple-sclerosis/symptoms-causes/syc-20350269.

      5. Multiple Sclerosis: Facts, Statistics, and You. [online] Healthline; August 21, 2020. Available at: https://www.healthline.com/health/multiple-sclerosis/facts-statistics-infographic.

        • Nguyen A.L.
        • Gresle M.
        • Marshall T.
        • Butzkueven H.
        • Field J.
        Monoclonal antibodies in the treatment of multiple sclerosis: emergence of B-cell-targeted therapies.
        Br. J. Pharmacol. 2017 Jul; 174 (Epub 2017 Apr 26. PMID: 28319650; PMCID: PMC5466523): 1895-1907https://doi.org/10.1111/bph.13780
        • Patti F.
        • Lo Fermo S.
        Lights and shadows of cyclophosphamide in the treatment of multiple sclerosis.
        Autoimmune Dis. 2011 Mar 15; 2011 (PMID: 21547093; PMCID: PMC3087413)961702https://doi.org/10.4061/2011/961702
        • Perron H.
        • Germi R.
        • Bernard C.
        • Garcia-Montojo M.
        • Deluen C.
        • Farinelli L.
        • Faucard R.
        • Veas F.
        • Stefas I.
        • Fabriek B.O.
        • Van-Horssen J.
        • Van-der-Valk P.
        • Gerdil C.
        • Mancuso R.
        • Saresella M.
        • Clerici M.
        • Marcel S.
        • Creange A.
        • Cavaretta R.
        • Caputo D.
        • Arru G.
        • Morand P.
        • Lang A.B.
        • Sotgiu S.
        • Ruprecht K.
        • Rieckmann P.
        • Villoslada P.
        • Chofflon M.
        • Boucraut J.
        • Pelletier J.
        • Hartung H.P.
        Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease.
        Mult. Scler. 2012 Dec; 18 (Epub 2012 Mar 28. PMID: 22457345; PMCID: PMC3573672): 1721-1736https://doi.org/10.1177/1352458512441381
        • Spain R.I.
        • Cameron M.H.
        • Bourdette D.
        Recent developments in multiple sclerosis therapeutics.
        BMC Med. 2009; 7: 74https://doi.org/10.1186/1741-7015-7-74
        • van Horssen J.
        • van der Pol S.
        • Nijland P.
        • Amor S.
        • Perron H.
        Human endogenous retrovirus W in brain lesions: rationale for targeted therapy in multiple sclerosis.
        Mult Scler Relat Disord. 2016 Jul; 8 (Epub 2016 Apr 22. PMID: 27456869): 11-18https://doi.org/10.1016/j.msard.2016.04.006
        • Voge N.V.
        • Alvarez E.
        Monoclonal Antibodies in Multiple Sclerosis: present and Future.
        Biomedicines. 2019 Mar 14; 7 (PMID: 30875812; PMCID: PMC6466331): 20https://doi.org/10.3390/biomedicines7010020
        • Walton C.
        • King R.
        • Rechtman L.
        • Kaye W.
        • Leray E.
        • Marrie R.A.
        • Robertson N.
        • La Rocca N.
        • Uitdehaag B.
        • van der Mei I.
        • Wallin M.
        • Helme A.
        • Angood Napier C.
        • Rijke N.
        • Baneke P.
        Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS.
        Mult. Scler. 2020 Dec; 26 (third edition) (Epub 2020 Nov 11. PMID: 33174475; PMCID: PMC7720355): 1816-1821https://doi.org/10.1177/1352458520970841
        • Zimmermann M.
        • Sanderson N.S.
        • Rasenack M.
        • Lalive P.H.
        • Lang A.B.
        • Curtin F.
        • Lindberg R.L.
        • Kappos L.
        • Derfuss T.
        Immunologic monitoring during a phase 2a trial of the GNbAC1 antibody in patients with MS.
        Neurol Neuroimmunol Neuroinflamm. 2015 Aug 20; 2 (PMID: 26380353; PMCID: PMC4547879): e144https://doi.org/10.1212/NXI.0000000000000144