Abstract
Background
multiple sclerosis (MS) is a complex disease sustained by several pathogenic mechanisms.
As such, combination therapy strategies, targeting a range of disease mechanisms,
might represent the ideal therapeutic approach. Here we investigated the efficacy
of curcumin, a naturally occurring poly-phenolic phytochemical with potent anti-inflammatory
and antioxidant properties, in subjects under treatment with IFN β-1a, to test the
effects of this combination therapy on clinical and MRI parameters of inflammation
and neurodegeneration in relapsing MS (RMS).
Methods
eighty active RMS were prospectively enrolled, randomized (1:1) to either the IFN-curcumin
or the IFN-placebo group and followed up longitudinally with clinical and MRI assessments
for 24 months. Primary endpoint was the efficacy of curcumin versus placebo as add-on
therapy on new/enlarging T2 lesions in RMS subjects under treatment with subcutaneous
IFN β-1a 44 mcg TIW. Efficacy on clinical parameters (relapses and disability progression),
other MRI parameters of inflammation (T1 Gd-enhancing lesions, combined unique active-CUA
lesions) and neurodegeneration (T1-hypointense lesions, grey matter loss and white
matter microstructural damage) as well as safety and tolerability of curcumin were
explored as secondary endpoints.
Results
ten subjects dropped out from the study by month 12 (6 in the IFN-curcumin group and
4 in the IFN-placebo group), and 27 by month 24 (11 in the IFN-curcumin group and
16 in the IFN-placebo group). Although no between-group difference was present in
terms of proportion of subjects free from new/enlarging T2 lesions, a lower proportion
of patients with CUA lesions was noted at month 12 in the IFN-curcumin group in comparison
with the IFN-placebo group (7.5% vs 17.5%, χ² test p= 0.0167). This result was not confirmed at month 24. The statistical analysis failed
to reveal any difference between the two treatment groups – IFN-curcumin and IFN-placebo
– in terms of relapses, disability progression, other MRI metrics of inflammation
and MRI changes suggestive of ongoing neurodegeneration. No difference in the rate
and nature of adverse events was observed between the two treatment groups.
Conclusion
Although the study drop-out rate was too high to allow definite conclusions, our findings
suggest that curcumin might add to IFN β-1a efficacy on radiological signs of inflammation
in MS, while it did not seem to exert any neuroprotective effect as assessed by clinical
and MRI parameters. (NCT01514370)
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Multiple Sclerosis and Related DisordersAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Neuroimaging of multiple sclerosis, acute disseminated encephalomyelitis, and other demyelinating diseases.Semin. Roentgenol. 2014; 49: 76-85https://doi.org/10.1053/j.ro.2013.09.002
- Chronic demyelination and axonal degeneration in multiple sclerosis: pathogenesis and therapeutic implications.Curr. Neurol. Neurosci. Rep. 2021; : 21https://doi.org/10.1007/s11910-021-01110-5
- Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study.Alzheimer’s Res. Ther. 2012; 4 (no pagination): 43https://doi.org/10.1186/alzrt146
- Immunological aspects of approved MS therapeutics.Front. Immunol. 2019; 10: 1-24https://doi.org/10.3389/fimmu.2019.01564
- Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis.Lancet. 1998; 352: 1498-1504https://doi.org/10.1016/S0140-6736(98)03334-0
- and the University of British Columbia MS/MRI Analysis Group PRISMS-4: long-term efficacy of interferon-β-1a in relapsing MS.Neurology. 2001; 56: 1628-1636https://doi.org/10.1212/WNL.56.12.1628
- Current status of neuroprotective and neuroregenerative strategies in multiple sclerosis: a systematic review.Mult. Scler. J. 2021; : 1-20https://doi.org/10.1177/13524585211008760
Kremer, D. Akkermann, R. Küry, P. Dutta, R. Current advancements in promoting remyelination in multiple sclerosis: 2018, doi:10.1177/1352458518800827.
- Therapeutic strategies in multiple sclerosis: a focus on neuroprotection and repair and relevance to schizophrenia.Schizophr. Res. 2014; 161: 94-101https://doi.org/10.1016/j.schres.2014.04.040
- Therapeutic potential of curcumin for multiple sclerosis.Neurol. Sci. 2018; 39: 207-214https://doi.org/10.1007/s10072-017-3149-5
- Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production.Int. Immunopharmacol. 2009; 9: 575-581https://doi.org/10.1016/j.intimp.2009.01.025
- Protective effect of curcumin on neural myelin sheaths by attenuating interactions between the endoplasmic reticulum and mitochondria after compressed spinal cord.J. Spine. 2016; 5https://doi.org/10.4172/2165-7939.1000322
- Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-κB as potential targets.J. Immunol. 2005; 174: 8116-8124https://doi.org/10.4049/jimmunol.174.12.8116
- Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis.J. Neuroimmunol. 2019; 327: 15-21https://doi.org/10.1016/j.jneuroim.2019.01.007
- Non-invasive quantification of inflammation, axonal and myelin injury in multiple sclerosis.Brain. 2021; 144: 213-223https://doi.org/10.1093/brain/awaa381
- Study of curcumin immunomodulatory effects on reactive astrocyte cell function.Int. Immunopharmacol. 2014; 22: 230-235https://doi.org/10.1016/j.intimp.2014.06.035
Abbott, N.J. Astrocyte – endothelial interactions and blood – brain barrier permeability. J Anat. 200, 629-638. doi:10.1046/j.1469-7580.2002.00064.x.
- Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia.Acta Pharmacol. Sin. 2007; 28: 1645-1651https://doi.org/10.1111/j.1745-7254.2007.00651.x
- MMPs in the central nervous system: where the good guys go bad.Semin. Cell Dev. Biol. 2008; 19: 42-51https://doi.org/10.1016/j.semcdb.2007.06.003
- Curcumin inhibits LPS-induced CCL2 expression via JNK Pathway in C6 rat astrocytoma cells.Cell. Mol. Neurobiol. 2012; 32: 1003-1010https://doi.org/10.1007/s10571-012-9816-4
- Curcumin protects axons from degeneration in the setting of local neuroinflammation.Exp. Neurol. 2014; 253: 102-110https://doi.org/10.1016/j.expneurol.2013.12.016
- Short-term curcumin supplementation enhances serum brain-derived neurotrophic factor in adult men and women: a systematic review and dose–response meta-analysis of randomized controlled trials.Nutr. Res. 2019; 69: 1-8https://doi.org/10.1016/j.nutres.2019.05.001
- BDNF modulation of NMDA receptors is activity dependent.J. Neurophysiol. 2008; 100: 3264-3274https://doi.org/10.1152/jn.90418.2008
- Local delivery of brain-derived neurotrophic factor enables behavioral recovery and tissue repair in stroke-injured rats.Tissue Eng. - Part A. 2019; 25: 1175-1187https://doi.org/10.1089/ten.tea.2018.0215
- Noninvasive brain delivery and efficacy of BDNF to stimulate neuroregeneration and suppression of disease relapse in EAE mice.Mol. Pharm. 2020; 17: 404-416https://doi.org/10.1021/acs.molpharmaceut.9b00644
- Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria.Ann. Neurol. 2011; 69: 292-302https://doi.org/10.1002/ana.22366
- Black holes in multiple sclerosis: definition, evolution, and clinical correlations.Acta Neurol. Scand. 2010; 122: 1-8https://doi.org/10.1111/j.1600-0404.2009.01221.x
- Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.Neuroimage. 2006; 31: 1487-1505https://doi.org/10.1016/j.neuroimage.2006.02.024
- Randomized, comparative study of interferon β-1a treatment regimens in MS: the evidence trial.Neurology. 2002; 59: 1496-1506https://doi.org/10.1212/01.WNL.0000034080.43681.DA
- Neuroprotective properties of curcumin in toxin-base animal models of Parkinson’s disease: a systematic experiment literatures review.BMC Complement. Altern. Med. 2017; 17: 1-10https://doi.org/10.1186/s12906-017-1922-x
- Supplementation with curcuma longa reverses neurotoxic and behavioral damage in models of Alzheimer’s disease: a systematic review.Curr. Neuropharmacol. 2018; 17: 406-421https://doi.org/10.2174/0929867325666180117112610
- A pilot cross-over study to evaluate human oral bioavailability of BCM-95® CG (BiocurcumaxTM), a novel bioenhanced preparation of curcumin.Indian J. Pharm. Sci. 2008; 70: 445-449https://doi.org/10.4103/0250-474X.44591
- Colloidal submicron-particle curcumin exhibits high absorption efficiency—A double-blind, 3-way crossover study.J. Nutr. Sci. Vitaminol. (Tokyo). 2015; 61: 37-44https://doi.org/10.3177/jnsv.61.37
- Neuroprotective effect of turmeric extract in combination with its essential oil and enhanced brain bioavailability in an animal model.Biomed Res. Int. 2021; : 2021https://doi.org/10.1155/2021/6645720
- MRI in multiple sclerosis: clinical and research update.Curr Opin Neurol. 2018; 31: 249-255https://doi.org/10.1097/WCO.0000000000000559
- Monitoring progressive multiple sclerosis with novel imaging techniques.Neurol. Ther. 2018; 7: 265-285https://doi.org/10.1007/s40120-018-0103-2
- Translational block in stroke: a constructive and “Out-of-the-Box” reappraisal.Front. Neurosci. 2021; 15: 1-22https://doi.org/10.3389/fnins.2021.652403
- Memory and brain amyloid and Tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial.Am. J. Geriatr. Psychiatry. 2018; 26: 266-277https://doi.org/10.1016/j.jagp.2017.10.010
- Use of vitamins and dietary supplements by patients with multiple sclerosis a review.JAMA Neurol. 2018; 75: 1013-1021https://doi.org/10.1001/jamaneurol.2018.0611
Article info
Publication history
Published online: September 20, 2021
Accepted:
September 19,
2021
Received in revised form:
September 7,
2021
Received:
August 17,
2021
Identification
Copyright
© 2021 Elsevier B.V. All rights reserved.