Advertisement
Clinical trial| Volume 56, 103274, November 2021

ProspeCtive study to evaluate efficacy, safety and tOlerability of dietary supplemeNT of Curcumin (BCM95) in subjects with Active relapsing MultIple Sclerosis treated with subcutaNeous Interferon beta 1a 44 mcg TIW (CONTAIN): A randomized, controlled trial

Published:September 20, 2021DOI:https://doi.org/10.1016/j.msard.2021.103274

      Abstract

      Background

      multiple sclerosis (MS) is a complex disease sustained by several pathogenic mechanisms. As such, combination therapy strategies, targeting a range of disease mechanisms, might represent the ideal therapeutic approach. Here we investigated the efficacy of curcumin, a naturally occurring poly-phenolic phytochemical with potent anti-inflammatory and antioxidant properties, in subjects under treatment with IFN β-1a, to test the effects of this combination therapy on clinical and MRI parameters of inflammation and neurodegeneration in relapsing MS (RMS).

      Methods

      eighty active RMS were prospectively enrolled, randomized (1:1) to either the IFN-curcumin or the IFN-placebo group and followed up longitudinally with clinical and MRI assessments for 24 months. Primary endpoint was the efficacy of curcumin versus placebo as add-on therapy on new/enlarging T2 lesions in RMS subjects under treatment with subcutaneous IFN β-1a 44 mcg TIW. Efficacy on clinical parameters (relapses and disability progression), other MRI parameters of inflammation (T1 Gd-enhancing lesions, combined unique active-CUA lesions) and neurodegeneration (T1-hypointense lesions, grey matter loss and white matter microstructural damage) as well as safety and tolerability of curcumin were explored as secondary endpoints.

      Results

      ten subjects dropped out from the study by month 12 (6 in the IFN-curcumin group and 4 in the IFN-placebo group), and 27 by month 24 (11 in the IFN-curcumin group and 16 in the IFN-placebo group). Although no between-group difference was present in terms of proportion of subjects free from new/enlarging T2 lesions, a lower proportion of patients with CUA lesions was noted at month 12 in the IFN-curcumin group in comparison with the IFN-placebo group (7.5% vs 17.5%, χ² test p= 0.0167). This result was not confirmed at month 24. The statistical analysis failed to reveal any difference between the two treatment groups – IFN-curcumin and IFN-placebo – in terms of relapses, disability progression, other MRI metrics of inflammation and MRI changes suggestive of ongoing neurodegeneration. No difference in the rate and nature of adverse events was observed between the two treatment groups.

      Conclusion

      Although the study drop-out rate was too high to allow definite conclusions, our findings suggest that curcumin might add to IFN β-1a efficacy on radiological signs of inflammation in MS, while it did not seem to exert any neuroprotective effect as assessed by clinical and MRI parameters. (NCT01514370)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bester M.
        • Petracca M.
        • Inglese M.
        Neuroimaging of multiple sclerosis, acute disseminated encephalomyelitis, and other demyelinating diseases.
        Semin. Roentgenol. 2014; 49: 76-85https://doi.org/10.1053/j.ro.2013.09.002
        • Simkins T.J.
        • Duncan G.J.
        • Bourdette D.
        Chronic demyelination and axonal degeneration in multiple sclerosis: pathogenesis and therapeutic implications.
        Curr. Neurol. Neurosci. Rep. 2021; : 21https://doi.org/10.1007/s11910-021-01110-5
        • Ringman M, John
        • Frautschy A, Sally
        • Teng Edmond
        • Begum N, Aynun
        • Bardens Jenny
        • Beigi Maryam
        • Gylys H, Karen
        • Badmaev Vladimir
        • Heat D, Dennis
        • Apostolova G, Liana
        • et al.
        Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study.
        Alzheimer’s Res. Ther. 2012; 4 (no pagination): 43https://doi.org/10.1186/alzrt146
        • Rommer P.S.
        • Milo R.
        • Han M.H.
        • Satyanarayan S.
        • Sellner J.
        • Hauer L.
        • Illes Z.
        • Warnke C.
        • Laurent S.
        • Weber M.S.
        • et al.
        Immunological aspects of approved MS therapeutics.
        Front. Immunol. 2019; 10: 1-24https://doi.org/10.3389/fimmu.2019.01564
        • The PRISMS Study Group
        Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis.
        Lancet. 1998; 352: 1498-1504https://doi.org/10.1016/S0140-6736(98)03334-0
        • The PRISMS Study Group
        and the University of British Columbia MS/MRI Analysis Group PRISMS-4: long-term efficacy of interferon-β-1a in relapsing MS.
        Neurology. 2001; 56: 1628-1636https://doi.org/10.1212/WNL.56.12.1628
        • Allanach J.R.
        • Farrell J.W.
        • Mésidor M.
        • Karimi-Abdolrezaee S.
        Current status of neuroprotective and neuroregenerative strategies in multiple sclerosis: a systematic review.
        Mult. Scler. J. 2021; : 1-20https://doi.org/10.1177/13524585211008760
      1. Kremer, D. Akkermann, R. Küry, P. Dutta, R. Current advancements in promoting remyelination in multiple sclerosis: 2018, doi:10.1177/1352458518800827.

        • Inglese M.
        • Petracca M.
        Therapeutic strategies in multiple sclerosis: a focus on neuroprotection and repair and relevance to schizophrenia.
        Schizophr. Res. 2014; 161: 94-101https://doi.org/10.1016/j.schres.2014.04.040
        • Qureshi M.
        • Al-Suhaimi E.A.
        • Wahid F.
        • Shehzad O.
        • Shehzad A.
        Therapeutic potential of curcumin for multiple sclerosis.
        Neurol. Sci. 2018; 39: 207-214https://doi.org/10.1007/s10072-017-3149-5
        • Xie L.
        • Li X.K.
        • Funeshima-Fuji N.
        • Kimura H.
        • Matsumoto Y.
        • Isaka Y.
        • Takahara S.
        Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production.
        Int. Immunopharmacol. 2009; 9: 575-581https://doi.org/10.1016/j.intimp.2009.01.025
        • jun Yu H.
        • Ma L.
        Protective effect of curcumin on neural myelin sheaths by attenuating interactions between the endoplasmic reticulum and mitochondria after compressed spinal cord.
        J. Spine. 2016; 5https://doi.org/10.4172/2165-7939.1000322
        • Kim G.-.Y.
        • Kim K.-.H.
        • Lee S.-.H.
        • Yoon M.-.S.
        • Lee H.-.J.
        • Moon D.-.O.
        • Lee C.-.M.
        • Ahn S.-.C.
        • Park Y.C.
        • Park Y.-.M.
        Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-κB as potential targets.
        J. Immunol. 2005; 174: 8116-8124https://doi.org/10.4049/jimmunol.174.12.8116
        • Dolati S.
        • Babaloo Z.
        • Ayromlou H.
        • Ahmadi M.
        • Rikhtegar R.
        • Rostamzadeh D.
        • Roshangar L.
        • Nouri M.
        • Mehdizadeh A.
        • Younesi V.
        • et al.
        Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis.
        J. Neuroimmunol. 2019; 327: 15-21https://doi.org/10.1016/j.jneuroim.2019.01.007
        • Schiavi S.
        • Petracca M.
        • Sun P.
        • Fleysher L.
        • Cocozza S.
        • Mounir M.
        • Mendili E.
        • Signori A.
        • Babb J.S.
        • Podranski K.
        • et al.
        Non-invasive quantification of inflammation, axonal and myelin injury in multiple sclerosis.
        Brain. 2021; 144: 213-223https://doi.org/10.1093/brain/awaa381
        • Seyedzadeh M.H.
        • Safari Z.
        • Zare A.
        • Gholizadeh Navashenaq J.
        • Razavi S.A.
        • Kardar G.A.
        • Khorramizadeh M.R.
        Study of curcumin immunomodulatory effects on reactive astrocyte cell function.
        Int. Immunopharmacol. 2014; 22: 230-235https://doi.org/10.1016/j.intimp.2014.06.035
      2. Abbott, N.J. Astrocyte – endothelial interactions and blood – brain barrier permeability. J Anat. 200, 629-638. doi:10.1046/j.1469-7580.2002.00064.x.

        • Jin C.Y.
        • Lee J.D.
        • Park C.
        • Choi Y.H.
        • Kim G.Y.
        Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia.
        Acta Pharmacol. Sin. 2007; 28: 1645-1651https://doi.org/10.1111/j.1745-7254.2007.00651.x
        • Agrawal S.M.
        • Lau L.
        • Yong V.W.
        MMPs in the central nervous system: where the good guys go bad.
        Semin. Cell Dev. Biol. 2008; 19: 42-51https://doi.org/10.1016/j.semcdb.2007.06.003
        • Zhang Z.J.
        • Zhao L.X.
        • Cao D.L.
        • Zhang X.
        • Gao Y.J.
        • Xia C.
        Curcumin inhibits LPS-induced CCL2 expression via JNK Pathway in C6 rat astrocytoma cells.
        Cell. Mol. Neurobiol. 2012; 32: 1003-1010https://doi.org/10.1007/s10571-012-9816-4
        • Tegenge M.A.
        • Rajbhandari L.
        • Shrestha S.
        • Mithal A.
        • Hosmane S.
        • Venkatesan A.
        Curcumin protects axons from degeneration in the setting of local neuroinflammation.
        Exp. Neurol. 2014; 253: 102-110https://doi.org/10.1016/j.expneurol.2013.12.016
        • Sarraf P.
        • Parohan M.
        • Javanbakht M.H.
        • Ranji-Burachaloo S.
        • Djalali M.
        Short-term curcumin supplementation enhances serum brain-derived neurotrophic factor in adult men and women: a systematic review and dose–response meta-analysis of randomized controlled trials.
        Nutr. Res. 2019; 69: 1-8https://doi.org/10.1016/j.nutres.2019.05.001
        • Crozier R.A.
        • Bi C.
        • Han Y.R.
        • Plummer M.R.
        BDNF modulation of NMDA receptors is activity dependent.
        J. Neurophysiol. 2008; 100: 3264-3274https://doi.org/10.1152/jn.90418.2008
        • Obermeyer J.M.
        • Tuladhar A.
        • Payne S.L.
        • Ho E.
        • Morshead C.M.
        • Shoichet M.S.
        Local delivery of brain-derived neurotrophic factor enables behavioral recovery and tissue repair in stroke-injured rats.
        Tissue Eng. - Part A. 2019; 25: 1175-1187https://doi.org/10.1089/ten.tea.2018.0215
        • Kopec B.M.
        • Kiptoo P.
        • Zhao L.
        • Rosa-Molinar E.
        • Siahaan T.J.
        Noninvasive brain delivery and efficacy of BDNF to stimulate neuroregeneration and suppression of disease relapse in EAE mice.
        Mol. Pharm. 2020; 17: 404-416https://doi.org/10.1021/acs.molpharmaceut.9b00644
        • Polman C.H.
        • Reingold S.C.
        • Banwell B.
        • Clanet M.
        • Cohen J.A.
        • Filippi M.
        • Fujihara K.
        • Havrdova E.
        • Hutchinson M.
        • Kappos L.
        • et al.
        Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria.
        Ann. Neurol. 2011; 69: 292-302https://doi.org/10.1002/ana.22366
        • Sahraian M.A.
        • Radue E.W.
        • Haller S.
        • Kappos L.
        Black holes in multiple sclerosis: definition, evolution, and clinical correlations.
        Acta Neurol. Scand. 2010; 122: 1-8https://doi.org/10.1111/j.1600-0404.2009.01221.x
        • Smith S.M.
        • Jenkinson M.
        • Johansen-Berg H.
        • Rueckert D.
        • Nichols T.E.
        • Mackay C.E.
        • Watkins K.E.
        • Ciccarelli O.
        • Cader M.Z.
        • Matthews P.M.
        • et al.
        Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.
        Neuroimage. 2006; 31: 1487-1505https://doi.org/10.1016/j.neuroimage.2006.02.024
        • Panitch H.
        • Goodin D.S.
        • Francis G.
        • Chang P.
        • Coyle P.K.
        • O’Connor P.
        • Monaghan E.
        • Li D.
        • Weinshenker B.
        Randomized, comparative study of interferon β-1a treatment regimens in MS: the evidence trial.
        Neurology. 2002; 59: 1496-1506https://doi.org/10.1212/01.WNL.0000034080.43681.DA
        • Wang X.S.
        • Zhang Z.R.
        • Zhang M.M.
        • Sun M.X.
        • Wang W.W.
        • Xie C.L.
        Neuroprotective properties of curcumin in toxin-base animal models of Parkinson’s disease: a systematic experiment literatures review.
        BMC Complement. Altern. Med. 2017; 17: 1-10https://doi.org/10.1186/s12906-017-1922-x
        • da Costa I.M.
        • de Moura Freire M.A.
        • de Paiva Cavalcanti J.R.L.
        • de Araújo D.P.
        • Norrara B.
        • Moreira Rosa I.M.M.
        • de Azevedo E.P.
        • do Rego A.C.M.
        • Filho I.A.
        • Guzen F.P.
        Supplementation with curcuma longa reverses neurotoxic and behavioral damage in models of Alzheimer’s disease: a systematic review.
        Curr. Neuropharmacol. 2018; 17: 406-421https://doi.org/10.2174/0929867325666180117112610
        • Antony B.
        • Merina B.
        • Iyer V.
        • Judy N.
        • Lennertz K.
        • Joyal S.
        A pilot cross-over study to evaluate human oral bioavailability of BCM-95® CG (BiocurcumaxTM), a novel bioenhanced preparation of curcumin.
        Indian J. Pharm. Sci. 2008; 70: 445-449https://doi.org/10.4103/0250-474X.44591
        • Sunagawa Y.
        • Hirano S.
        • Katanasaka Y.
        • Miyazaki Y.
        • Funamoto M.
        • Okamura N.
        • Hojo Y.
        • Suzuki H.
        • Doi O.
        • Yokoji T.
        • et al.
        Colloidal submicron-particle curcumin exhibits high absorption efficiency—A double-blind, 3-way crossover study.
        J. Nutr. Sci. Vitaminol. (Tokyo). 2015; 61: 37-44https://doi.org/10.3177/jnsv.61.37
        • Banji D.
        • Banji O.J.F.
        • Srinivas K.
        Neuroprotective effect of turmeric extract in combination with its essential oil and enhanced brain bioavailability in an animal model.
        Biomed Res. Int. 2021; : 2021https://doi.org/10.1155/2021/6645720
        • Inglese M.
        • Petracca M.
        MRI in multiple sclerosis: clinical and research update.
        Curr Opin Neurol. 2018; 31: 249-255https://doi.org/10.1097/WCO.0000000000000559
        • Petracca M.
        • Margoni M.
        • Bommarito G.
        • Inglese M.
        Monitoring progressive multiple sclerosis with novel imaging techniques.
        Neurol. Ther. 2018; 7: 265-285https://doi.org/10.1007/s40120-018-0103-2
        • Lourbopoulos A.
        • Mourouzis I.
        • Xinaris C.
        • Zerva N.
        • Filippakis K.
        • Pavlopoulos A.
        • Pantos C.
        Translational block in stroke: a constructive and “Out-of-the-Box” reappraisal.
        Front. Neurosci. 2021; 15: 1-22https://doi.org/10.3389/fnins.2021.652403
        • Small G.W.
        • Siddarth P.
        • Li Z.
        • Miller K.J.
        • Ercoli L.
        • Emerson N.D.
        • Martinez J.
        • Wong K.P.
        • Liu J.
        • Merrill D.A.
        • et al.
        Memory and brain amyloid and Tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial.
        Am. J. Geriatr. Psychiatry. 2018; 26: 266-277https://doi.org/10.1016/j.jagp.2017.10.010
        • Evans E.
        • Piccio L.
        • Cross A.H.
        Use of vitamins and dietary supplements by patients with multiple sclerosis a review.
        JAMA Neurol. 2018; 75: 1013-1021https://doi.org/10.1001/jamaneurol.2018.0611