Advertisement
Research Article| Volume 56, 103228, November 2021

The role of oxidative stress and haematological parameters in relapsing-remitting multiple sclerosis in Kurdish population

Published:August 27, 2021DOI:https://doi.org/10.1016/j.msard.2021.103228

      Highlights

      • To find the role of oxidative stress in relapsing-remitting multiple sclerosis (RRMS) in Kurdish population.
      • To detect some major defects in haematological profiles in the RRMS.
      • To explore the disturbance of immunological parameters in the RRMS.
      • The utilization of Cu+2 supplement could be used as an effective modality in RRMS patients.

      Abstract

      Background

      Multiple sclerosis (MS), as a neurodegenerative disorder, exhibits inflammation and oxidative stress hallmarks.

      Objective

      The research aims to know any disturbances in haematological parameters and antioxidant system of relapsing-remitting multiple sclerosis (RRMS) patients in the Kurdish population.

      Methods

      A case-control research meeting following the McDonald criterion was conducted on 100 RRMS patients and 100 controls.

      Results

      Lipid peroxidation products of malondialdehyde (MDA), erythrocyte sedimentation rate (ESR), and total leucocyte counts (TLCs) were increased significantly, but copper (Cu+2) and superoxide dismutase (SOD) were decreased significantly while nitric oxide metabolites (NOx) and lymphocyte were not changed significantly if compared with that of controls.

      Conclusion

      Findings from our study revealed that some defects were detected in haematological profiles in the Kurdish population and disturbance of immunological parameters. In addition, the utilization of Cu+2 supplement as an effective modality for RRMS patients may be beneficial.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adamczyk B.
        • Adamczyk-Sowa M.
        New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis.
        Oxid. Med. Cell Longev. 2016; (20161973834)1973834
        • Al-Bayati M.A.
        • Jamil D.A.
        • Al-Aubaidy H.A.
        Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy.
        N. Am. J. Med. Sci. 2015; 7: 41-46
        • Awasthi A.
        • Kuchroo V.K
        Th17 cells: from precursors to players in inflammation and infection.
        Int. Immunol. 2009; 21: 489-498
        • Ayala A.
        • Mu X.F.1.
        • Oz M.F.
        • Arg X.F.C.
        • ELLES S
        Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.
        Oxid. Med. Cell Longev. 2014; (2014): 31
        • Cardona F.
        • Tunez I.
        • Tasset I.
        • Montilla P.
        • Collantes E.
        • Tinahones F.
        Fat overload aggravates oxidative stress in patients with the metabolic syndrome.
        Eur. J. Clin. Invest. 2008; 38: 510-515
        • Chen Y.
        • Saari J.T.
        • Kang Y.J
        Weak antioxidant defenses make the heart a target for damage in copper-deficient rats.
        Free Radic. Biol. Med. 1994; 17: 529-536
        • de Riccardis L.
        • Buccolieri A.
        • Muci M.
        • Pitotti E.
        • de Robertis F.
        • Trianni G.
        • Manno D.
        • Maffia M.
        Copper and ceruloplasmin dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjects.
        Biochim. Biophys. Acta Mol. Basis Dis. 2018; 1864: 1828-1838
        • Emamgholipour S.
        • Hossein-Nezhad A.
        • Sahraian M.A.
        • Askarisadr F.
        • Ansari M.
        Expression and enzyme activity of MnSOD and catalase in peripheral blood mononuclear cells isolated from multiple sclerosis patients.
        Arch. Med. Lab. Sci. 2015; : 1
        • Erman F.
        • Aydin S.
        • Demir Y.
        • Akcay F.
        • Bakan E.
        Determination of saturated and unsaturated Fatty acids amount in leukocyte membranes from subjects fed with solid and fluid oils.
        BMB Rep. 2006; 39: 516-521
        • Faizi M.
        • Salimi A.
        • Seydi E.
        • Naserzadeh P.
        • Kouhnavard M.
        • Rahimi A.
        • Pourahmad J.
        Toxicity of cuprizone a Cu(2+) chelating agent on isolated mouse brain mitochondria: a justification for demyelination and subsequent behavioral dysfunction.
        Toxicol. Mech. Methods. 2016; 26: 276-283
        • Fang F.C.
        Antimicrobial reactive oxygen and nitrogen species: concepts and controversies.
        Nat. Rev. Micro. 2004; 2: 820-832
        • Forsberg K.
        Misfolded Superoxide dismutase-1 in Sporadic and Familial Amyotrophic Lateral Sclerosis.
        Umeå Universitet, 2011
        • Fossiez F.
        • Djossou O.
        • Chomarat P.
        • Flores-Romo L.
        • Ait-Yahia S.
        • Maat C.
        • Pin J.J.
        • Garrone P.
        • Garcia E.
        • Saeland S.
        • Blanchard D.
        • Gaillard C.
        • Das Mahapatra B.
        • Rouvier E.
        • Golstein P.
        • Banchereau J.
        • Lebecque S.
        T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines.
        J. Exp. Med. 1996; 183: 2593-2603
        • Ghonimi N.A.M.
        • Elsharkawi K.A.
        • Khyal D.S.M.
        • Abdelghani A.A
        Serum malondialdehyde as a lipid peroxidation marker in multiple sclerosis patients and its relation to disease characteristics.
        Mult. Scler. Relat. Disord. 2021; 51102941
        • Giovannoni G.
        • Heales S.J.
        • Land J.M.
        • Thompson E.J
        The potential role of nitric oxide in multiple sclerosis.
        Mult. Scler. 1998; 4: 212-216
        • Gironi M.
        • Borgiani B.
        • Cursano C.
        • Saresella M.
        • Piancone F.
        • Mariani E.
        • Marventano I.
        • Martinelli V.
        • Comi G.
        • Clerici M.
        The peripheral network between oxidative stress and inflammation in multiple sclerosis.
        Eur. J. Inflamm. 2014; 12: 351-363
        • Green L.C.
        • Wagner D.A.
        • Glogowski J.
        • Skipper P.L.
        • Wishnok J.S.
        • Tannenbaum S.R
        Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids.
        Anal. Biochem. 1982; 126: 131-138
        • Griess P.
        Bemerkungen zu der abhandlung der hh. Weselsky und benedikt „ueber einige azoverbindungen”.
        Ber. Dtsch. Chem. Ges. 1879; 12: 426-428
        • Gunther P.
        • Baum P.
        • Then Bergh F
        • Hermann W
        [Wilson's disease and multiple sclerosis. Co-occurrence].
        Nervenarzt. 2010; 81: 226-228
        • Hawk S.N.
        • Lanoue L.
        • Keen C.L.
        • Kwik-Uribe C.L.
        • Rucker R.B.
        • Uriu-Adams J.Y.
        Copper-deficient rat embryos are characterized by low superoxide dismutase activity and elevated superoxide anions.
        Biol. Reprod. 2003; 68: 896-903
      1. Hulley, S.B., Cummings, S.R., Browner, W.S., Grady, D. & Newman, T.B. 2013. Designing clinical research.

        • Hunter M.
        • Nlemadim B.
        • Davidson D.
        Lipid peroxidation products and antioxidant proteins in plasma and cerebrospinal fluid from multiple sclerosis patients.
        Neurochem. Res. 1985; 10: 1645-1652
        • Hussain S.P.
        • Hofseth L.J.
        • Harris C.C
        Radical causes of cancer.
        Nat. Rev. Cancer. 2003; 3: 276-285
        • Johnson W.T.
        • Thomas A.C
        Copper deprivation potentiates oxidative stress in HL-60 cell mitochondria.
        Proc. Soc. Exp. Biol. Med. 1999; 221: 147-152
        • Kawamata H.
        • Manfredi G.
        Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space.
        Antioxid. Redox Signal. 2010; 13: 1375-1384
        • Ko C.K.
        Effectiveness of rehabilitation for multiple sclerosis.
        Clin. Rehabil. 1999; 13: 33-41
        • Lee H.
        • Kim H.J.
        • Kim J.-.M.
        • Chang N.
        Effects of dietary folic acid supplementation on cerebrovascular endothelial dysfunction in rats with induced hyperhomocysteinemia.
        Brain Res. 2004; 996: 139-147
        • Linné J.J.
        • Ringsrud K.M
        Clinical Laboratory science: the Basics and Routine Techniques.
        1999 (St. Louis, Mo.; London, Mosby)
        • Lovrić J.
        • Mesić M.
        • Macan M.
        • Koprivanac M.
        • Kelava M.
        • Bradamante V
        Measurement of malondialdehyde (MDA) level in rat plasma after simvastatin treatment using two different analytical methods.
        Hrcak Portal Scientif. J. Croatia. 2008; 110: 63-68
        • Lublin F.D.
        • Reingold S.C
        Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis.
        Neurology. 1996; 46: 907-911
        • Lynch S.M.
        • Frei B.
        • Morrow J.D.
        • Roberts L.J.
        • Xu A.
        • Jackson T.
        • Reyna R.
        • Klevay L.M.
        • Vita J.A.
        • Keaney Jr, J.F.
        Vascular superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 2975-2981
        • McNicholas N.
        • Hutchinson M.
        • McGuigan C.
        • Chataway J.
        McDonald diagnostic criteria: a review of the evidence.
        Mult. Scler. Relat. Disord. 2018; 24: 48-54
        • Mezzaroba L.
        • Alfieri D.F.
        • Simão A.N.C.
        • Reiche E.M.V
        The role of zinc, copper, manganese and iron in neurodegenerative diseases.
        Neurotoxicology. 2019; 74: 230-241
        • Miljković D.
        • Spasojević I
        Multiple sclerosis: molecular mechanisms and therapeutic opportunities.
        Antioxid. Redox Signal. 2013; 19: 2286-2334
        • Miron V.E.
        • Kuhlmann T.
        • Antel J.P
        Cells of the oligodendroglial lineage, myelination, and remyelination.
        Biochim. Biophys. Acta. 2011; 1812: 184-193
        • Mitosek-Szewczyk K.
        • Gordon-Krajcer W.
        • Walendzik P.
        • Stelmasiak Z.
        Free radical peroxidation products in cerebrospinal fluid and serum of patients with multiple sclerosis after glucocorticoid therapy.
        Folia Neuropathol. 2010; 48: 116-122
        • Moshage H.
        Cytokines and the hepatic acute phase response.
        J. Pathol. 1997; 181: 257-266
        • Nazeri M.
        • Bazrafshan H.
        • Abolhasani Foroughi A.
        Serum inflammatory markers in patients with multiple sclerosis and their association with clinical manifestations and MRI findings.
        Acta Neurol. Belg. 2021;
        • Newsholme P.
        • Haber E.P.
        • Hirabara S.M.
        • Rebelato E.L.O.
        • Procopio J.
        • Morgan D.
        • Oliveira-Emilio H.C.
        • Carpinelli A.R.
        • Curi R.
        Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. 2007; 583: 9-24
        • Nishito Y.
        • Kambe T.
        Absorption Mechanisms of Iron, Copper, and Zinc: an Overview.
        J. Nutr. Sci. Vitaminol. 2018; 64 (Tokyo): 1-7
        • Oberley L.W.
        • Spitz D.R
        [61]Assay of superoxide dismutase activity in tumor tissue.
        Meth. Enzymol. 1984; (Academic Press)
        • Ortiz G.G.
        • Macias-Islas M.A.
        • Pacheco-Moises F.P.
        • Cruz-Ramos J.A.
        • Sustersik S.
        • Barba E.A.
        • Aguayo A.
        Oxidative stress is increased in serum from Mexican patients with relapsing-remitting multiple sclerosis.
        Dis. Markers. 2009; 26: 35-39
        • Pegoretti V.
        • Swanson K.A.
        • Bethea J.R.
        • Probert L.
        • Eisel U.L.M.
        • Fischer R.
        Inflammation and Oxidative Stress in Multiple Sclerosis: consequences for Therapy Development.
        Oxid. Med. Cell Longev. 2020; (2020)7191080
        • Prohaska J.
        • Wells W.
        Copper deficiency in the developing rat brain: a possible model for Menkes'steely-hair disease.
        J. Neurochem. 1974; 23: 91-98
        • Raghavan S.
        • Subramaniyam G.
        • Shanmugam N.
        Proinflammatory effects of malondialdehyde in lymphocytes.
        J. Leukoc. Biol. 2012; 92: 1055-1067
        • Ramsaransing G.S.
        • Mellema S.A.
        • de Keyser J.
        Dietary patterns in clinical subtypes of multiple sclerosis: an exploratory study.
        Nutr. J. 2009; 8: 36
        • Randox
        Randox Copper Assay.
        2020 ([Online]. Available) ([Accessed])
        • Randox
        Copper Assay.
        2021 ([Online]. Available: https://store.randox.com/product/cu2340/[Accessed])
        • Sagar H.J.
        • Allonby I.D
        Lymphocyte subpopulations in multiple sclerosis: serial studies and clinical correlations.
        J. Neurol. Sci. 1979; 43: 133-148
        • Sedighi B.
        • Ebrahimi H.A.
        • Haghdoost A.A.
        • Abotorabi M.
        Comparison of serum levels of copper and zinc among multiple sclerosis patients and control group.
        Iran. J. Neurol. 2013; 12: 125-128
        • Selchen D.
        • Bhan V.
        • Blevins G.
        • Devonshire V.
        • Duquette P.
        • Grand'maison F.
        • Kremenchutzky M.
        • Lapierre Y.
        • LI D.
        • von Riedemann S.J.
        • FREEDMAN M.
        MS, MRI, and the 2010 McDonald criteria: a Canadian expert commentary.
        Neurology. 2012; 79: S1-15
        • Sheykhansari S.
        • Kozielski K.
        • Bill J.
        • Sitti M.
        • Gemmati D.
        • Zamboni P.
        • Singh A.V
        Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review.
        Cell Death. Dis. 2018; 9: 348
        • Simpson L.O.
        • Shand B.I.
        • Olds R.J.
        • Larking P.W.
        • ARNOTT M.J
        Red Cell and Haematological Changes in Multiple Sclerosis.
        Pathology. 1987; 19: 51-55
        • Singh P.
        Sample Size for Experimental Studies.
        J. Clin. Prev. Cardiol. 2012; 1: 88-93
        • Smith K.J.
        • Lassmann H.
        The role of nitric oxide in multiple sclerosis.
        Lancet Neurol. 2002; 1: 232-241
        • Song Z.Y.
        • Yamasaki R.
        • Kawano Y.
        • Sato S.
        • Masaki K.
        • Yoshimura S.
        • Matsuse D.
        • Murai H.
        • Matsushita T.
        • Kira J.
        Peripheral blood T cell dynamics predict relapse in multiple sclerosis patients on fingolimod.
        PLoS One. 2014; 10e0124923
        • Spolski R.
        • Wang L.
        • Wan C.K.
        • Bonville C.A.
        • Domachowske J.B.
        • Kim H.P.
        • YU Z.
        • Leonard W.J
        IL-21 promotes the pathologic immune response to pneumovirus infection.
        J. Immunol. 2012; 188: 1924-1932
        • Sun J.
        • Zhang X.
        • Broderick M.
        • Fein H.
        Measurement of nitric oxide production in biological systems by using griess reaction assay.
        Sensors. 2003; 3: 276-284
        • Tavazzi B.
        • Batocchi A.P.
        • Amorini A.M.
        • Nociti V.
        • D'urso S.
        • Longo S.
        • Gullotta S.
        • Picardi M.
        • Lazzarino G
        Serum metabolic profile in multiple sclerosis patients.
        Mult. Scler. Int. 2011; (2011)167156
        • Uriu-Adams J.Y.
        • Keen C.L
        Copper, oxidative stress, and human health.
        Mol. Aspects Med. 2005; 26: 268-298
        • Vaziri N.
        Causal link between oxidative stress, inflammation, and hypertension.
        Iranian J. Kidney Dis. 2008;
        • Vega-Riquer J.M.
        • Mendez-Victoriano G.
        • Morales-Luckie R.A.
        • Gonzalez-Perez O.
        Five Decades of Cuprizone, an Updated Model to Replicate Demyelinating Diseases.
        Curr. Neuropharmacol. 2019; 17: 129-141
        • Wallin M.T.
        • Culpepper W.J.
        • Campbell J.D.
        • Nelson L.M.
        • Langer-Gould A.
        • Marrie R.A.
        • Cutter G.R.
        • Kaye W.E.
        • Wagner L.
        • Tremlett H.
        The prevalence of MS in the United States: a population-based estimate using health claims data.
        Neurology. 2019; 92: e1029-e1040
        • Yenkoyan K.
        • Harutyunyan H.
        • Harutyunyan A.
        A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders.
        Free Radic. Biol. Med. 2018; 123: 85-95
        • Zhang S.-.Y.
        • Gui L.-.N.
        • Liu Y.-.Y.
        • Shi S.
        • Cheng Y.
        Oxidative Stress Marker Aberrations in Multiple Sclerosis: a Meta-Analysis Study.
        Front. Neurosci. 2020; : 14
        • Zorov D.B.
        • Juhaszova M.
        • Sollott S.J
        Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.
        Physiol. Rev. 2014; 94: 909-950