Advertisement

Modified models to distinguish central nervous system demyelinating diseases with brain lesions

      Highlights

      • Novel models to distinguish between MOGAD, NMOSD, and MS.
      • Systemically describing the brain image features in Asian patients with MOGAD.
      • Highlighting the demographics in discriminating the CNS demyelinating diseases.

      Abstract

      Background

      Brain lesions in patients with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are indistinguishable from those with relapsing-remitting multiple sclerosis (RRMS) and aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-Ab NMOSD).

      Methods

      Patients with MOGAD, RRMS, and AQP4-Ab NMOSD with abnormal brain lesions were retrospectively reviewed and divided into training and validation sets. Discriminatory models using brain images and demographics were generated to identify optimal predictors using orthogonal partial least square discriminant analysis after principal component analysis (PCA) of clinico-radiological data without a diagnosis. Constructed models were tested in an independent cohort.

      Results

      PCA of 51 brain scans and demographics from patients (13 MOGAD, 24 RRMS, and 14 AQP4-Ab NMOSD) demonstrated that RRMS was distinct from antibody-mediated conditions. The best predictors between MOGAD and AQP4-Ab NMOSD were poorly demarcated lesions, large abnormalities (both predictive for MOGAD), female sex, disease duration, linear lesions adjacent to the lateral ventricle, and cerebellum involvement (all predictive for MOGAD). Periventricular, ovoid/round, juxtacortical, and callosal lesions; Dawson's fingers; T1 hypointensity (all predictive for RRMS); and fluffy as well as large lesions (for MOGAD) were the best predictors of MOGAD and RRMS. RRMS versus MOGAD and RRMS versus AQP4-Ab NMOSD models exhibited a high predictive value and perfect accuracy (100%), which was validated in an independent cohort. The model of patients with AQP4-Ab NMOSD and MOGAD exhibited lower predictive power but still achieved an accuracy of 90%.

      Conclusions

      Brain MRI characteristics combined with demographics enables the distinction of MOGAD from RRMS and AQP4-Ab NMOSD. Fluffy and large lesions are relatively specific MRI characteristics in patients with MOGAD with brain abnormalities in Asian countries.

      Keywords

      Abbreviations:

      MOGAD (Myelin oligodendrocyte glycoprotein antibody-associated disease), RRMS (Relapsing-remitting multiple sclerosis), NMOSD (Neuromyelitis optica spectrum disorders), AQP4-Ab (Aquaporin-4 antibody), PCA (Principal component analysis), OPLS-DA (Orthogonal partial least squares discriminant analysis)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cobo-Calvo A.
        • Ruiz A.
        • Maillart E.
        • Audoin B.
        • Zephir H.
        • Bourre B.
        • Ciron J.
        • Collongues N.
        • Brassat D.
        • Cotton F.
        • Papeix C.
        • Durand-Dubief F.
        • Laplaud D.
        • Deschamps R.
        • Cohen M.
        • Biotti D.
        • Ayrignac X.
        • Tilikete C.
        • Thouvenot E.
        • Brochet B.
        • Dulau C.
        • Moreau T.
        • Tourbah A.
        • Lebranchu P.
        • Michel L.
        • Lebrun-Frenay C.
        • Montcuquet A.
        • Mathey G.
        • Debouverie M.
        • Pelletier J.
        • Labauge P.
        • Derache N.
        • Coustans M.
        • Rollot F.
        • De Seze J.
        • Vukusic S.
        • Marignier R.
        • Ofsep, Group, N.S.
        Clinical spectrum and prognostic value of CNS MOG autoimmunity in adults: The MOGADOR study.
        Neurology. 2018; 90: e1858-e1869
      1. Dean, M., Wingerchuk, B., Banwell, J., L., B., Philippe, C., William, C., 2015. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology.

        • Filippi M.
        • Preziosa P.
        • Banwell B.L.
        • Barkhof F.
        • Ciccarelli O.
        • De Stefano N.
        • Geurts J.J.G.
        • Paul F.
        • Reich D.S.
        • Toosy A.T.
        • Traboulsee A.
        • Wattjes M.P.
        • Yousry T.A.
        • Gass A.
        • Lubetzki C.
        • Weinshenker B.G.
        • Rocca M.A.
        Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines.
        Brain. 2019; 142: 1858-1875
        • Hoftberger R.
        • Sepulveda M.
        • Armangue T.
        • Blanco Y.
        • Rostasy K.
        • Calvo A.C.
        • Olascoaga J.
        • Ramio-Torrenta L.
        • Reindl M.
        • Benito-Leon J.
        • Casanova B.
        • Arrambide G.
        • Sabater L.
        • Graus F.
        • Dalmau J.
        • Saiz A.
        Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease.
        Mult. Scler. 2015; 21: 866-874
        • Jarius S.
        • Paul F.
        • Aktas O.
        • Asgari N.
        • Dale R.C.
        • de Seze J.
        • Franciotta D.
        • Fujihara K.
        • Jacob A.
        • Kim H.J.
        • Kleiter I.
        • Kümpfel T.
        • Levy M.
        • Palace J.
        • Ruprecht K.
        • Saiz A.
        • Trebst C.
        • Weinshenker B.G.
        • Wildemann B.
        MOG encephalomyelitis: international recommendations on diagnosis and antibody testing.
        J. Neuroinflammation. 2018; 15: 134
        • Jarius S.
        • Ruprecht K.
        • Kleiter I.
        • Borisow N.
        • Asgari N.
        • Pitarokoili K.
        • Pache F.
        • Stich O.
        • Beume L.A.
        • Hummert M.W.
        • Ringelstein M.
        • Trebst C.
        • Winkelmann A.
        • Schwarz A.
        • Buttmann M.
        • Zimmermann H.
        • Kuchling J.
        • Franciotta D.
        • Capobianco M.
        • Siebert E.
        • Lukas C.
        • Korporal-Kuhnke M.
        • Haas J.
        • Fechner K.
        • Brandt A.U.
        • Schanda K.
        • Aktas O.
        • Paul F.
        • Reindl M.
        • Wildemann B.
        • in cooperation with the Neuromyelitis Optica Study, G.
        MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome.
        J. Neuroinflammation. 2016; 13: 280
        • Jurynczyk M.
        • Geraldes R.
        • Probert F.
        • Woodhall M.R.
        • Waters P.
        • Tackley G.
        • DeLuca G.
        • Chandratre S.
        • Leite M.I.
        • Vincent A.
        • Palace J.
        Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis.
        Brain. 2017; 140: 617-627
        • Jurynczyk M.
        • Tackley G.
        • Kong Y.
        • Geraldes R.
        • Matthews L.
        • Woodhall M.
        • Waters P.
        • Kuker W.
        • Craner M.
        • Weir A.
        • DeLuca G.C.
        • Kremer S.
        • Leite M.I.
        • Vincent A.
        • Jacob A.
        • de Seze J.
        • Palace J.
        Brain lesion distribution criteria distinguish MS from AQP4-antibody NMOSD and MOG-antibody disease.
        J. Neurol. Neurosurg. Psychiatry. 2017; 88: 132-136
        • Kitley J.
        • Waters P.
        • Woodhall M.
        • Leite M.I.
        • Murchison A.
        • George J.
        • Kuker W.
        • Chandratre S.
        • Vincent A.
        • Palace J.
        Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study.
        JAMA Neurol. 2014; 71: 276-283
        • Oksenberg J.R.
        • Baranzini S.E.
        • Sawcer S.
        • Hauser S.L.
        The genetics of multiple sclerosis: SNPs to pathways to pathogenesis.
        Nat. Rev. Genet. 2008; 9: 516-526
        • Sato D.K.
        • Callegaro D.
        • Lana-Peixoto M.A.
        • Waters P.J.
        • Jorge F.M.d.H.
        • Takahashi T.
        • Nakashima I.
        • Apostolos-Pereira S.L.
        • Talim N.
        • Simm R.F.
        Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders.
        Neurology. 2014; 82
        • Thompson A.J.
        • Banwell B.L.
        • Barkhof F.
        • Carroll W.M.
        • Coetzee T.
        • Comi G.
        • Correale J.
        • Fazekas F.
        • Filippi M.
        • Freedman M.S.
        • Fujihara K.
        • Galetta S.L.
        • Hartung H.P.
        • Kappos L.
        • Lublin F.D.
        • Marrie R.A.
        • Miller A.E.
        • Miller D.H.
        • Montalban X.
        • Mowry E.M.
        • Sorensen P.S.
        • Tintore M.
        • Traboulsee A.L.
        • Trojano M.
        • Uitdehaag B.M.J.
        • Vukusic S.
        • Waubant E.
        • Weinshenker B.G.
        • Reingold S.C.
        • Cohen J.A.
        Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.
        Lancet Neurology. 2018; 17: 162-173
        • Tian D.C.
        • Zhang C.
        • Yuan M.
        • Yang X.
        • Shi F.D.
        Incidence of multiple sclerosis in China: a nationwide hospital-based study.
        Lancet Reg. Health - West. Pac. 2021; 1
        • Trygg J.
        • Wold S.
        Orthogonal projections to latent structures (O-PLS).
        J. Chemom. 2002; 16: 119-128
        • Wang H.
        • Dai Y.
        • Qiu W.
        • Zhong X.
        • Wu A.
        • Wang Y.
        • Lu Z.
        • Bao J.
        • Hu X.
        HLA-DPB1*0501 is associated with susceptibility to anti-aquaporin-4 antibodies positive neuromyelitis optica in Southern Han Chinese.
        J. Neuroimmunol. 2011; 233: 181-184
        • Waterman C.L.
        • Currie R.A.
        • Cottrell L.A.
        • Dow J.
        • Wright J.
        • Waterfield C.J.
        • Griffin J.L.
        An integrated functional genomic study of acute phenobarbital exposure in the rat.
        BMC Genom. 2010; 11: 9
        • Wingerchuk D.M.
        • Banwell B.
        • Bennett J.L.
        • Cabre P.
        • Carroll W.
        • Chitnis T.
        • de Seze J.
        • Fujihara K.
        • Greenberg B.
        • Jacob A.
        • Jarius S.
        • Lana-Peixoto M.
        • Levy M.
        • Simon J.H.
        • Tenembaum S.
        • Traboulsee A.L.
        • Waters P.
        • Wellik K.E.
        • Weinshenker B.G.
        • International Panel for, N.M.O.D.
        International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.
        Neurology. 2015; 85: 177-189
        • Wingerchuk D.M.
        • Lennon V.A.
        • Lucchinetti C.F.
        • Pittock S.J.
        • Weinshenker B.G.
        The spectrum of neuromyelitis optica.
        Lancet Neurol. 2007; 6: 805-815