Original article| Volume 45, 102413, October 2020

Validation of the functional assessment of chronic illness therapy – General treatment satisfaction (FACIT-TS-G) in multiple sclerosis


      • Valid assessment of treatment satisfaction is critical in the care of multiple sclerosis (MS).
      • Our results suggest the Functional Assessment of Chronic Illness Therapy – General Treatment Satisfaction (FACIT-TS-G) is a reliable and valid measure of patient-reported treatment satisfaction in MS.
      • These results also suggest infusible disease modifying treatments (DMTs) for MS are associated with greater treatment satisfaction compared to DMTs with oral or injection administration.



      Patient-reported treatment satisfaction is associated with medication adherence and persistence, making it increasingly important in the multiple sclerosis (MS) population, where disease modifying treatments (DMTs) can be vital in preventing accumulation of disability. Therefore, the valid assessment of treatment satisfaction is critical in MS care. The current study aimed to examine the validity of the Functional Assessment of Chronic Illness Therapy – General Treatment Satisfaction (FACIT-TS-G) in an MS population.


      Patient-reported outcome (PRO) data were collected from 555 MS patients (mean age 47.99±11.57; 76.4% female; 78.7% White/Caucasian) as part of routine clinical care. The FACIT-TS-G reliability, validity, and factor structure were examined. FACIT-TS-G scores were compared between DMT administration type (oral, injection, infusion) and examined as a possible predictor of switching DMT type at 1-to-2-year follow-up.


      The FACIT-TS-G showed good internal consistency (Cronbach's α=0.836), convergent validity, and known-group validity. Confirmatory factor analyses supported a single factor. DMT infusion administration was associated with slightly greater FACIT-TS-G scores than injection (p = 0.013, 95% CI: 0.269, 2.273) and oral administration (p = 0.030, 95% CI: 0.087, 1.717). FACIT-TS-G scores did not predict the likelihood of switching DMT type at follow-up (p>0.05).


      Our findings support the use of the FACIT-TS-G as a PRO measure of treatment satisfaction in MS. Moreover, results suggest DMT administration via infusion is associated with greater treatment satisfaction. Future research is needed to examine treatment satisfaction in the context of other outcomes.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Barbosa C.D.
        • Balp M.-.M.
        • Kulich K.
        • Germain N.
        • Rofail D.
        A literature review to explore the link between treatment satisfaction and adherence, compliance, and persistence.
        Patient Prefer Adherence. 2012; 6: 39-48
        • Brundage M.
        • Bass B.
        • Jolie R.
        • Foley K.
        A knowledge translation challenge: clinical use of quality of life data from cancer clinical trials.
        Qual. Life Res. 2011; 20: 979-985
        • Cella D.
        • Lai J.-.S.
        • Nowinski C.J.
        • Victorson D.
        • Peterman A.
        • Miller D.
        • Bethoux F.
        • Heinemann A.
        • Rubin S.
        • Cavazos J.E.
        • Reder A.T.
        • Sufit R.
        • Simuni T.
        • Holmes G.L.
        • Siderowf A.
        • Wojna V.
        • Bode R.
        • McKinney N.
        • Podrabsky T.
        • Wortman K.
        • Choi S.
        • Gershon R.
        • Rothrock N.
        • Moy C.
        Neuro-QOL: brief measures of health-related quality of life for clinical research in neurology.
        Neurology. 2012; 78: 1860-1867
        • Costello K.
        • Kennedy P.
        • Scanzillo J
        Recognizing nonadherence in patients with multiple sclerosis and maintaining treatment adherence in the long term.
        Medscape J. Med. 2008; 10: 225
        • Eagle T.
        • Stuart F.
        • Chua A.S.
        • LaRussa A.
        • Leclaire K.
        • Cook S.L.
        • Chitnis T.
        • Weiner H.L.
        • Glanz B.I.
        • Healy B.C.
        Treatment satisfaction across injectable, infusion, and oral disease-modifying therapies for multiple sclerosis.
        Mult. Scler. Relat. Disord. 2017; 18: 196-201
        • El Gaafary M
        A guide to PROMs methodology and selection criteria.
        (Ed.)in: El Miedany Y. Patient Reported Outcome Measures in Rheumatic Diseases. Springer International Publishing, Cham2016: 21-58
        • Fernández O.
        • Duran E.
        • Ayuso T.
        • Hernández L.
        • Bonaventura I.
        • Forner M.
        Treatment satisfaction with injectable disease-modifying therapies in patients with relapsing-remitting multiple sclerosis (the STICK study).
        PLoS ONE. 2017; 12
        • Garcia-Dominguez J.M.
        • Muñoz D.
        • Comellas M.
        • Gonzalbo I.
        • Lizán L.
        • Polanco Sánchez C
        Patient preferences for treatment of multiple sclerosis with disease-modifying therapies: a discrete choice experiment.
        Patient Prefer Adherence. 2016; 10: 1945-1956
        • Glanz B.I.
        • Musallam A.
        • Rintell D.J.
        • Chitnis T.
        • Weiner H.L.
        • Healy B.C.
        Treatment Satisfaction in multiple sclerosis.
        Int. J. MS Care. 2014; 16: 68-75
        • Haase R.
        • Kullmann J.S.
        • Ziemssen T.
        Therapy satisfaction and adherence in patients with relapsing–remitting multiple sclerosis: the THEPA-MS survey.
        Ther. Adv. Neurol. Disord. 2016; 9: 250-263
        • Hao J.
        • Pitcavage J.
        • Jones J.B.
        • Hoegerl C.
        • Graham J.
        Measuring adherence and outcomes in the treatment of patients with multiple sclerosis.
        J. Am. Osteopath. Assoc. 2017; 117: 737
        • Hincapie A.L.
        • Penm J.
        • Burns C.F.
        Factors associated with patient preferences for disease-modifying therapies in multiple sclerosis.
        JMCP. 2017; 23: 822-830
        • Hohol M.J.
        • Orav E.J.
        • Weiner H.L.
        Disease Steps in multiple sclerosis: a simple approach to evaluate disease progression.
        Neurology. 1995; 45: 251-255
        • Hu L.T.
        • Bentler P.M.
        Evaluating model fit.
        in: Hoyle R.H. Structural Equation Modeling: Concepts, Issues, and Application. Sage, Thousand Oaks, CA1995: 77-99
        • IBM Corp.
        SPSS Statistics.
        IBM Corp, Armonk, NY2017 (Version 25.0)
        • Ishaque S.
        • Karnon J.
        • Chen G.
        • Nair R.
        • Salter A.B.
        A systematic review of randomised controlled trials evaluating the use of patient-reported outcome measures (PROMs).
        Qual. Life Res. 2018; 28: 567-592
        • Lanzillo R.
        • Prosperini L.
        • Gasperini C.
        A multicent re observational analysis of persistence to treatment in the new multiple sclerosis era: the respect study.
        J. Neurol. 2018; 265: 1174-1183
        • Learmonth Y.C.
        • Motl R.W.
        • Sandroff B.M.
        • Pula J.H.
        • Cadavid D.
        Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis.
        BMC Neurol. 2013; 13
        • Mansfield C.
        • Thomas N.
        • Gebben D.
        • Lucas M.
        • Hauber A.B.
        Preferences for multiple sclerosis treatments.
        Int. J. MS Care. 2016; 19: 172-183
        • McDonald W.I.
        • Compston A.
        • Edan G.
        • Goodkin D.
        • Hartung H.-.P.
        • Lublin F.D.
        • McFarland H.F.
        • Paty D.W.
        • Polman C.H.
        • Reingold S.C.
        • Sandberg-Wollheim M.
        • Sibley W.
        • Thompson A.
        • Van Den Noort S.
        • Weinshenker B.Y.
        • Wolinsky J.S.
        Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis.
        Ann. Neurol. 2001; 50: 121-127
        • Medina L.D.
        • Torres S.
        • Alvarez E.
        • Valdez B.
        • Nair K.V.
        Patient-reported outcomes in multiple sclerosis: validation of the quality of life in neurological disorders (Neuro-QoLTM) short forms.
        Mult. Scler. J. Exp. Transl. Clin. 2019; 5205521731988598
        • Muthén L.K.
        • Muthén B.O.
        Mplus User's Guide.
        Sixth Edition. Muthén & Muthén, Los Angeles, CA2010
        • Peipert J.D.
        • Beaumont J.L.
        • Bode R.
        • Cella D.
        • Garcia S.F.
        • Hahn E.A.
        Development and validation of the functional assessment of chronic illness therapy treatment satisfaction (FACIT TS) measures.
        Qual. Life Res. 2014; 23: 815-824
        • Peterson R.A.
        A meta-analysis of Cronbach's coefficient alpha.
        J. Consum. Res. 1994; 21: 381-391
        • Schaeffer J.
        • Cossetti C.
        • Mallucci G.
        • Pluchino S.
        Multiple sclerosis.
        Neurobiology of Brain Disorders. Elsevier, 2015: 497-520
        • Schreiber J.B.
        • Nora A.
        • Stage F.K.
        • Barlow E.A.
        • King J.
        Reporting structural equation modeling and confirmatory factor analysis results: a review.
        J. Educ. Res. 2006; 99: 323-338
        • Talib T.L.
        • DeChant P.
        • Kean J.
        • Monahan P.O.
        • Haggstrom D.A.
        • Stout M.E.
        • Kroenke K.
        A qualitative study of patients’ perceptions of the utility of patient-reported outcome measures of symptoms in primary care clinics.
        Qual. Life Res. 2018; 27: 3157-3166
        • Thompson A.J.
        • Baranzini S.E.
        • Geurts J.
        • Hemmer B.
        • Ciccarelli O.
        Multiple sclerosis.
        Lancet North Am. Ed. 2018; 391: 1622-1636
        • Ware J.E.
        • Gandek B.
        Methods for testing data quality, scaling assumptions, and reliability: the IQOLA project approach.
        J. Clin. Epidemiol. 1998; 51: 945-952