Advertisement
Research Article| Volume 43, 102159, August 2020

Functional representation of the symbol digit modalities test in relapsing remitting multiple sclerosis

      Highlights

      • The original SDMT activates brain areas comparable to the methodological adaptions
      • Cognitive components of IPS involves superior parietal and cerebellar areas
      • MS-patients had decreased cingulate activation during SDMT compared to controls

      Abstract

      Background

      The Symbol Digit Modalities Test (SDMT) is essential in the screening of cognitive impairments in multiple sclerosis (MS). Methodological adaptions of the SDMT on functional MRI exist, but without specific investigation of more cognitive components of information processing speed (IPS). Additionally, there is only limited data on functional differences between MS-patients and healthy controls (HC).

      Methods

      20 MS-patients and 20 HC were investigated executing the original version of the SDMT on fMRI. We analyzed (1) neural networks as indicated in the methodological adaptions (i.e. frontal (Brodman area BA6, BA9), parietal (BA7), occipital (BA17) and cerebellar), (2) functional activations of cognitive components of IPS and (3) functional differences between MS and HC during SDMT.

      Results

      MS patients performed worse during the SDMT. Both groups demonstrated activation on each region of interest. Cognitive component of IPS was driven by superior parietal and posterior cerebellar activation. MS-patients showed decreased cingulate activation during SDMT as compared to HC.

      Conclusion

      The original SDMT task revealed comparable fMRI-activation sites as reported for previous adaptions. Cognitive components of IPS depend on superior parietal and medial posterior cerebellar regions known to process visuo-spatial integration and anticipation. Attention related areas in the cingulate cortex were decreased in MS-patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alvarez J.A.
        • Emory E.
        Executive function and the frontal lobes: a meta-analytic review.
        Neuropsychol Rev. 2006; 16: 17-42
        • Amato M.P.
        • Zipoli V.
        • Portaccio E.
        Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies.
        J Neurol Sci. 2006; 245: 41-46
        • Batista S.
        • Zivadinov R.
        • Hoogs M.
        • Bergsland N.
        • Heininen-Brown M.
        • Dwyer M.G.
        • Weinstock-Guttman B.
        • Benedict R.H.
        Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis.
        J Neurol. 2012; 259: 139-146
        • Beck A.T.
        • Steer R.A.
        • Brown G.K.
        Manual for the Beck Depression Inventory-II.
        The Psychological Cooperation Inc, San Antonio1996
        • Benedict R.H.
        • DeLuca J.
        • Phillips G.
        • LaRocca N.
        • Hudson L.D.
        • Rudick R.
        • Multiple Sclerosis Outcome Assessments, C.
        Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis.
        Mult Scler. 2017; 23: 721-733
        • Bush G.
        • Luu P.
        • Posner M.I.
        Cognitive and emotional influences in anterior cingulate cortex.
        Trends Cogn Sci. 2000; 4: 215-222
        • Chiaravalloti N.D.
        • DeLuca J.
        Cognitive impairment in multiple sclerosis.
        Lancet Neurol. 2008; (2008/11/15 ed): 1139-1151
        • Chouinard P.A.
        • Paus T.
        The primary motor and premotor areas of the human cerebral cortex.
        The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry. 2006; 12: 143-152
        • Corbetta M.
        • Shulman G.L.
        • Miezin F.M.
        • Petersen S.E.
        Superior parietal cortex activation during spatial attention shifts and visual feature conjunction.
        Science. 1995; 270: 802-805
        • Costa S.L.
        • Genova H.M.
        • DeLuca J.
        • Chiaravalloti N.D.
        Information processing speed in multiple sclerosis: Past, present, and future.
        Mult Scler. 2017; 23: 772-789
        • Courchesne E.
        • Press G.A.
        • Murakami J.
        • Berthoty D.
        • Grafe M.
        • Wiley C.A.
        • Hesselink J.R.
        The cerebellum in sagittal plane–anatomic-MR correlation: 1.
        The vermis. AJR Am J Roentgenol. 1989; 153: 829-835
        • Culham J.C.
        • Cavina-Pratesi C.
        • Singhal A.
        The role of parietal cortex in visuomotor control: what have we learned from neuroimaging?.
        Neuropsychologia. 2006; 44: 2668-2684
        • Dobryakova E.
        • Costa S.L.
        • Wylie G.R.
        • DeLuca J.
        • Genova H.M.
        Altered Effective Connectivity during a Processing Speed Task in Individuals with Multiple Sclerosis.
        J Int Neuropsychol Soc. 2016; 22: 216-224
        • Filippi M.
        • Preziosa P.
        • Rocca M.A.
        Brain mapping in multiple sclerosis: Lessons learned about the human brain.
        Neuroimage. 2019; 190: 32-45
        • Forn C.
        • Belloch V.
        • Bustamante J.C.
        • Garbin G.
        • Parcet-Ibars M.A.
        • Sanjuan A.
        • Ventura N.
        • Avila C.
        A symbol digit modalities test version suitable for functional MRI studies.
        Neurosci Lett. 2009; 456: 11-14
        • Grothe M.
        • Lotze M.
        • Langner S.
        • Dressel A.
        Impairments in Walking Ability, Dexterity, and Cognitive Function in Multiple Sclerosis Are Associated with Different Regional Cerebellar Gray Matter Loss.
        Cerebellum. 2017;
        • Grzegorski T.
        • Losy J.
        Cognitive impairment in multiple sclerosis - a review of current knowledge and recent research.
        Reviews in the neurosciences. 2017;
        • Hirsch J.A.
        • Martinez L.M.
        Circuits that build visual cortical receptive fields.
        Trends in neurosciences. 2006; 29: 30-39
        • Ikkai A.
        • Curtis C.E.
        Common neural mechanisms supporting spatial working memory, attention and motor intention.
        Neuropsychologia. 2011; 49: 1428-1434
        • Langdon D.W.
        • Amato M.P.
        • Boringa J.
        • Brochet B.
        • Foley F.
        • Fredrikson S.
        • Hamalainen P.
        • Hartung H.P.
        • Krupp L.
        • Penner I.K.
        • Reder A.T.
        • Benedict R.H.
        Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS).
        Mult Scler. 2012; 18: 891-898
        • Lara A.H.
        • Wallis J.D.
        The Role of Prefrontal Cortex in Working Memory: A Mini Review.
        Frontiers in systems neuroscience. 2015; 9: 173
        • Leavitt V.M.
        • Wylie G.
        • Genova H.M.
        • Chiaravalloti N.D.
        • DeLuca J.
        Altered effective connectivity during performance of an information processing speed task in multiple sclerosis.
        Mult Scler. 2012; 18: 409-417
        • Meijer K.A.
        • van Geest Q.
        • Eijlers A.J.C.
        • Geurts J.J.G.
        • Schoonheim M.M.
        • Hulst H.E.
        Is impaired information processing speed a matter of structural or functional damage in MS?.
        NeuroImage. Clinical. 2018; 20: 844-850
        • Papadopoulou A.
        • Muller-Lenke N.
        • Naegelin Y.
        • Kalt G.
        • Bendfeldt K.
        • Kuster P.
        • Stoecklin M.
        • Gass A.
        • Sprenger T.
        • Radue E.W.
        • Kappos L.
        • Penner I.K.
        Contribution of cortical and white matter lesions to cognitive impairment in multiple sclerosis.
        Mult Scler. 2013; 19: 1290-1296
        • Penner I.K.
        • Raselli C.
        • Stocklin M.
        • Opwis K.
        • Kappos L.
        • Calabrese P.
        The Fatigue Scale for Motor and Cognitive Functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue.
        Mult Scler. 2009; 15: 1509-1517
        • Petit L.
        • Orssaud C.
        • Tzourio N.
        • Salamon G.
        • Mazoyer B.
        • Berthoz A.
        PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement.
        J Neurophysiol. 1993; 69: 1009-1017
        • Preziosa P.
        • Rocca M.A.
        • Pagani E.
        • Stromillo M.L.
        • Enzinger C.
        • Gallo A.
        • Hulst H.E.
        • Atzori M.
        • Pareto D.
        • Riccitelli G.C.
        • Copetti M.
        • De Stefano N.
        • Fazekas F.
        • Bisecco A.
        • Barkhof F.
        • Yousry T.A.
        • Arevalo M.J.
        • Filippi M.
        • Group M.S.
        Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: A Multicenter Study.
        Hum Brain Mapp. 2016; 37: 1627-1644
        • Riccitelli G.C.
        • Pagani E.
        • Rodegher M.
        • Colombo B.
        • Preziosa P.
        • Falini A.
        • Comi G.
        • Filippi M.
        • Rocca M.A.
        Imaging patterns of gray and white matter abnormalities associated with PASAT and SDMT performance in relapsing-remitting multiple sclerosis.
        Mult Scler. 2017; 1352458517743091
        • Sallet J.
        • Mars R.B.
        • Noonan M.P.
        • Neubert F.X.
        • Jbabdi S.
        • O'Reilly J.X.
        • Filippini N.
        • Thomas A.G.
        • Rushworth M.F.
        The organization of dorsal frontal cortex in humans and macaques.
        J Neurosci. 2013; 33: 12255-12274
        • Schmahmann J.D.
        The cerebellum and cognition.
        Neurosci Lett. 2019; 688: 62-75
        • Schoonheim M.M.
        • Hulst H.E.
        • Brandt R.B.
        • Strik M.
        • Wink A.M.
        • Uitdehaag B.M.
        • Barkhof F.
        • Geurts J.J.
        Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis.
        Neurology. 2015; 84: 776-783
        • Sheridan L.K.
        • Fitzgerald H.E.
        • Adams K.M.
        • Nigg J.T.
        • Martel M.M.
        • Puttler L.I.
        • Wong M.M.
        • Zucker R.A.
        Normative Symbol Digit Modalities Test performance in a community-based sample.
        Archives of clinical neuropsychology: the official journal of the National Academy of Neuropsychologists. 2006; 21: 23-28
        • Silva P.H.R.
        • Spedo C.T.
        • Barreira A.A.
        • Leoni R.F.
        Symbol Digit Modalities Test adaptation for Magnetic Resonance Imaging environment: A systematic review and meta-analysis.
        Multiple sclerosis and related disorders. 2018; 20: 136-143
        • Smith A.
        Symbol Digit Modalities Test: Manual..
        Western Psychological Services, Los Angeles1982
        • Sokolov A.A.
        • Miall R.C.
        • Ivry R.B.
        The Cerebellum: Adaptive Prediction for Movement and Cognition.
        Trends Cogn Sci. 2017; 21: 313-332
        • Stoodley C.J.
        • Valera E.M.
        • Schmahmann J.D.
        Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study.
        Neuroimage. 2012; 59: 1560-1570
        • Takeuchi H.
        • Sugiura M.
        • Sassa Y.
        • Sekiguchi A.
        • Yomogida Y.
        • Taki Y.
        • Kawashima R.
        Neural correlates of the difference between working memory speed and simple sensorimotor speed: an fMRI study.
        PLoS One. 2012; 7: e30579
        • Thompson A.J.
        • Banwell B.L.
        • Barkhof F.
        • Carroll W.M.
        • Coetzee T.
        • Comi G.
        • Correale J.
        • Fazekas F.
        • Filippi M.
        • Freedman M.S.
        • Fujihara K.
        • Galetta S.L.
        • Hartung H.P.
        • Kappos L.
        • Lublin F.D.
        • Marrie R.A.
        • Miller A.E.
        • Miller D.H.
        • Montalban X.
        • Mowry E.M.
        • Sorensen P.S.
        • Tintore M.
        • Traboulsee A.L.
        • Trojano M.
        • Uitdehaag B.M.J.
        • Vukusic S.
        • Waubant E.
        • Weinshenker B.G.
        • Reingold S.C.
        • Cohen J.A.
        Diagnosis of multiple sclerosis 2017: revisions of the McDonald criteria.
        Lancet Neurol. 2018; 17: 162-173
        • Vernet M.
        • Quentin R.
        • Chanes L.
        • Mitsumasu A.
        • Valero-Cabre A.
        Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations.
        Front Integr Neurosci. 2014; 8: 66
        • Wang J.
        • Yang Y.
        • Fan L.
        • Xu J.
        • Li C.
        • Liu Y.
        • Fox P.T.
        • Eickhoff S.B.
        • Yu C.
        • Jiang T.
        Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches.
        Hum Brain Mapp. 2015; 36: 238-257