Original article| Volume 42, 102085, July 2020

Assessing balance in non-disabled subjects with multiple sclerosis: Validation of the Fullerton Advanced Balance Scale


      • FAB-s evaluates balance, testing all of the systems for postural control.
      • This tool detects subtle changes in balance performance in non-disabled PwMS.
      • FAB-s discriminates between healthy controls and non-disabled PwMS.



      To validate the Fullerton Advanced Balance (FAB) scale for high-functioning non-disabled people with multiple sclerosis (PwMS).


      Cross-sectional study.


      A convenience sample of early-diagnosed PwMS (N = 82; Expanded Disability Status Scale score ≤ 2.5) with disease duration ≤ 5 years and a control group of healthy volunteers (N = 45).

      Main Outcome Measures

      FAB scale, Timed Up and Go test (TUG), 6 Min Walk Test (6MWT) and 25 Foot Walk Test (25FWT).


      Six of the ten original FAB scale items were selected to represent a unidimensional construct. Only one factor with eigenvalues > 1.0 (1.90) was found. The new version of the scale reported a Cronbach alpha value of 0.65, and it was also statistically significantly correlated with TUG (r = -0.48). The new six-item scale, dubbed the FAB-short scale (FAB-s), discriminated between healthy volunteers and PwMS; moreover, both the FAB-s and the TUG test discriminated between the two PwMS subgroups: EDSS=0–1.5 (no disability) and EDSS=2–2.5 (minimal disability).


      FAB-s is a unidimensional clinical tool for assessing balance. The scale is a promising instrument for detecting subtle changes in balance performance in high-functioning PwMS.



      MS (multiple sclerosis), PwMS (people with MS), EDSS (Expanded Disability Status Scale), FAB (Fullerton Advanced Balance), EFA (Exploratory Factor Analysis), HC (Healthy Control), TUG (Timed Up and Go), 6MWT (6 Minute Walk Test), 25FWT (25 Foot Walk Test), FAB-s (Fullerton Advanced Balance short scale), ROC (receiver Operating Characteristic), AUC (area Under the Curve)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Anastasi D.
        • Carpinella I.
        • Gervasoni E.
        • Matsuda P.N.
        • Bovi G.
        • Ferrarin M.
        • Cattaneo D.
        Instrumented version of the modified Dynamic Gait Index in patients with neurologic disorders.
        PM R. 2019; 8
        • Berg K.
        • Wood-Dauphine S.
        • Williams J.
        • Maki B.
        Measuring balance in the elderly: preliminary development of an instrument.
        Physiother. Can. 1989; 41: 304-311
        • Cattaneo D.
        • Regola A.
        • Meotti M.
        Validity of six balance disorders scales in persons with multiple sclerosis.
        Disabil. Rehabil. 2006; 30: 789-795
        • Cattaneo D.
        • Jonsdottir J.
        • Coote S.
        Targeting dynamic balance in falls-prevention interventions in multiple sclerosis.
        Int. J. MS Care. 2014; 16: 198-202
        • Cameron M.H.
        • Nilsagard Y.
        Balance, gait, and falls in multiple sclerosis.
        Handb. Clin. Neurol. 2018; 159: 237-250
        • Di Mauro R.
        • Di Girolamo S.
        • Ralli M.
        • de Vincentiis M.
        • Mercuri N.
        • Albanese M.
        Subclinical cochlear dysfunction in newly diagnosed relapsing-remitting multiple sclerosis.
        Mult. Scler. Relat. Disord. 2019; 33: 55-60
        • Enright P.L.
        • Sherrill D.L.
        Reference equations for the six-minute walk in healthy adults.
        Am. J. Respir. Crit. Care. Med. 1998; 158: 1384-1387
      1. Franchignoni F., Horak F., Godi M., Nardone A., Giordano A., 2010. Using psychometric techniques to improve the Balance Evaluation Systems Test: the mini-BESTest. 42(4):323–31.

        • Floyd F.J.
        • Widaman K.F.
        Factor analysis in the development and refinement of clinical assessment instruments.
        Psychol. Assess. 1995; 7: 286-299
        • Godi M.
        • Franchignoni F.
        • Caligari M.
        • Giordano A.
        • Turcato A.M.
        • Nardone A.
        Comparison of reliability, validity, and responsiveness of the mini-BESTest and Berg Balance Sale in patients with balance disorders.
        Phys. Ther. 2013; 93: 158-167
        • Goldman M.D.
        • Marrie R.A.
        • Cohen J.A.
        Evaluation of the six-minute walk in multiple sclerosis subjects and healthy controls.
        Mult. Scler. 2008; 14: 383-390
        • Horak F.
        • Wrisley D.
        • Frank J.
        Balance Evaluation Systems Test (BESTest) to differentiate balance deficits.
        Phys. Ther. 2009; 89: 484-498
        • Isles R.C.
        • Choy N.L.
        • Steer M.
        • Nitz J.C.
        Normal values of balance tests in women aged 20-80.
        J. Am. Geriatr. Soc. 2004; 52: 1367-1372
        • Kaiser H.
        An index of factor simplicity.
        Psychometrika. 1974; 39: 31-36
        • Kieseier B.C.
        • Pozzilli C.
        Assessing walking disability in multiple sclerosis.
        Mult. Scler. 2012; 18: 914-924
        • Krbot Skorić M.
        • Crnošija L.
        • Gabelić T.
        • Adamec I.
        • Habek M.
        Relationship between sensory dysfunction and walking speed in patients with clinically isolated syndrome.
        J. Clin. Neurophysiol. 2018; 35: 65-70
        • Kale N.
        Optic neuritis as an early sign of multiple sclerosis.
        Eye Brain. 2016; 26: 195-202
        • Klein P.J.
        • Fiedler R.C.
        • Rose D.J.
        Rasch analysis of the Fullerton Advanced Balance (FAB) scale.
        Physiother. Can. 2011; 63: 115-125
        • Lavorgna L.
        • Borriello G.
        • Esposito S.
        • Abbadessa G.
        • Capuano R.
        • De Giglio L.
        • Logoteta A.
        • Pozzilli C.
        • Tedeschi G.
        • Bonavita S.
        Impact of early diagnosis on clinical characteristics of an Italian sample of people with multiple sclerosis recruited online.
        Mult. Scler. Relat. Disord. 2019; 27: 239-246
        • Lynn M.R.
        Determination and quantification of content validity.
        Nurs. Res. 1986; 35: 382-385
        • Martin C.L.
        • Phillips B.A.
        • Kilpatrick T.J.
        • Butzkueven H.
        • Tubridy N.
        • McDonald E.
        • Galea M.P.
        Gait and balance impairment in early multiple sclerosis in the absence of clinical disability.
        Mult. Scler. 2006; 12: 620-628
        • Mitchell K.D.
        • Chen H.
        • Silfies S.P.
        Test-Retest reliability, validity, and minimal detectable change of the balance evaluation systems test to assess balance in persons with multiple sclerosis.
        Int. J. MS Care. 2018; 20: 231-237
        • Matsuda P.N.
        • Taylor C.S.
        • Shumway-Cook A.
        Evidence for the validity of the modified dynamic gait index across diagnostic groups.
        Phys. Ther. 2014; 94: 996-1004
        • Moore J.L.
        • Potter K.
        • Blankshain K.
        • Kaplan S.L.
        • OʼDwyer L.C.
        • Sullivan J.E.
        A core set of outcome measures for adults with neurologic conditions undergoing rehabilitation: a clinical practice guideline.
        J Neurol Phys Ther. 2018; 42: 174-220
        • Nunnally J.C.
        • Bernstein I.C.H.
        Psychometric Theory.
        3rd ed. McGraw-Hill, New York1994
        • Pau M.
        • Mandaresu S.
        • Pilloni G.
        • Porta M.
        • Coghe G.
        • Marrosu M.G.
        • Cocco E.
        Smoothness of gait detects early alterations of walking in persons with multiple sclerosis without disability.
        Gait. Posture. 2017; 58: 307-309
        • Podsiadlo D.
        • Richardson S.
        The timed “Up & Go”: a test of basic functional mobility for frail elderly persons.
        J. Am. Geriatr. Soc. 1991; 39: 142-148
        • Potter K.
        • Anderberg L.
        • Anderson D.
        • Bauer B.
        • Beste M.
        • Navrat S.
        • Kohia M.
        Reliability, validity, and responsiveness of the Balance Evaluation Systems Test (BESTest) in individuals with multiple sclerosis.
        Physiotherapy. 2018; 104: 142-148
        • Pau M.
        • Porta M.
        • Coghe G.
        • Corona F.
        • Pilloni G.
        • Lorefice L.
        • Marrosu M.G.
        • Cocco E.
        Are static and functional balance abilities related in individuals with multiple sclerosis?.
        Mult. Scler. Relat. Disord. 2017; 15: 1-6
        • Polman C.H.
        • Reingold S.C.
        • Banwell B.
        • Clanet M.
        • Cohen J.A.
        • Filippi M.
        • Fujihara K.
        • Havrdova E.
        • Hutchinson M.
        • Kappos L.
        • Lublin F.D.
        • Montalban X.
        • O'Connor P.
        • Sandberg-Wollheim M.
        • Thompson A.J.
        • Waubant E.
        • Weinshenker B.
        • Wolinsky J.D.
        Diagnostic criteria for multiple sclerosis: 2010 revisions to the “McDonald criteria”.
        Ann. Neurol. 2011; 69: 292-302
        • Pau M.
        • Porta M.
        • Coghe G.
        • Corona F.
        • Pilloni G.
        • Lorefice L.
        • Marrosu M.G.
        • Cocco E.
        Are static and functional balance abilities related in individuals with Multiple sclerosis?.
        Mult. Scler. Relat. Disord. 2017; 15: 1-6
        • Riemenschneider M.
        • Hvid L.G.
        • Stenager E.
        • Dalgas U.
        Is there an overlooked "window of opportunity" in MS exercise therapy? Perspectives for early MS rehabilitation.
        Mult. Scler. 2018; 24: 886-894
        • Rose D.J.
        • Lucchese N.
        • Wiersma L.D.
        Development of a multidimensional balance scale for use with functionally independent older adults.
        Arch Phys Med Rehabil. 2006; 87: 1478-1485
        • Shanahan C.J.
        • Boonstra F.M.C.
        • Cofré Lizama L.E.
        • Strik M.
        • Moffat B.A.
        • Khan F.
        • Kilpatrick T.J.
        • van der Walt A.
        • Galea M.P.
        • Kolbe S.C.
        Technologies for advanced Gait and balance assessments in people with multiple sclerosis.
        Front. Neurol. 2018; 2: 708
        • Shumway-Cook A.
        • Taylor C.
        • Noritake Matsuda P.
        • Studer M.T.
        • Whetten B.K.
        Expanding the scoring system for the Dynamic Gait Index.
        Phys. Ther. 2013; 93: 1493-1506
        • Sebastião E.
        • Sandroff B.M.
        • Learmonth Y.C.
        • Motl R.W.
        Validity of the timed up and go test as a measure of functional mobility in persons with multiple sclerosis.
        Arch. Phys. Med. Rehabil. 2016; 97: 1072-1077
        • Schlenstedt C.
        • Brombacher S.
        • Hartwigsen G.
        • Weisser B.
        • Möller B.
        • Deuschl G.
        Comparing the fullerton advanced balance scale with the mini-bestest and berg balance scale to assess postural control in patients with parkinson disease.
        Arch Phys Med Rehabil. 2015; 96: 218-225
        • Shumway-Cook A.
        • Woollacott M.H.
        Motor Control: Theory and Practical Applications.
        Lippincott Williams & Wilkins, Philadelphia2001
        • Whitney S.L.
        • Hudak M.T.
        • Marchetti G.F.
        The dynamic gait index relates to self-reported fall history in individuals with vestibular dysfunction.
        J. Vestib. Res. 2000; 10: 99-105
        • Waltz C.F.
        • Bausell R.B.
        Nursing Research: Design, Statistics, and Computer Analysis.
        F.A. Davis Co, Philadelphia1981