Advertisement

Differentiate aquaporin-4 antibody negative neuromyelitis optica spectrum disorders from multiple sclerosis by multimodal advanced MRI techniques

  • Author Footnotes
    1 These two authors contributed equally to this work.
    Ningnannan Zhang
    Footnotes
    1 These two authors contributed equally to this work.
    Affiliations
    Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
    Search for articles by this author
  • Author Footnotes
    1 These two authors contributed equally to this work.
    Jie Sun
    Footnotes
    1 These two authors contributed equally to this work.
    Affiliations
    Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
    Search for articles by this author
  • Qiuhui Wang
    Affiliations
    Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
    Search for articles by this author
  • Wen Qin
    Affiliations
    Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
    Search for articles by this author
  • Xue Zhang
    Affiliations
    Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
    Search for articles by this author
  • Yuan Qi
    Affiliations
    Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
    Search for articles by this author
  • Li Yang
    Affiliations
    Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
    Search for articles by this author
  • Fu-Dong Shi
    Affiliations
    Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
    Search for articles by this author
  • Chunshui Yu
    Correspondence
    Corresponding author at: Director of Radiological Department, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
    Affiliations
    Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
    Search for articles by this author
  • Author Footnotes
    1 These two authors contributed equally to this work.

      Highlights

      • AQP4-Ab negative NMOSD showed less white matter damage than MS.
      • Occipital cortex functional disconnection in AQP4-Ab negative NMOSD need attention.
      • As complementary to DTI, microstructural tissue complexity benefit by DKI.
      • Advanced MRI like DKI or fMRI should be outcome measures in future clinical.

      Abstract

      Background

      It is clinically essential to distinguish aquaporin-4 antibody (AQP4-Ab) negative neuromyelitis optica spectrum disorders (NMOSD) and multiple sclerosis (MS) because of different therapeutic strategies. Since clinical and lesion features may not allow the distinction, we aimed to identify advanced imaging features that could improve the distinction between two disorders.

      Methods

      Multimodal imaging measures included fractional anisotropy, mean, axial, radial diffusivity (MD, AD, RD) and kurtosis (MK, AK, RK) from diffusion kurtosis imaging; functional connectivity strength (FCS) and density, regional homogeneity, amplitude of low frequency fluctuations from resting-state functional MRI; gray matter volume from structural MRI; and cerebral blood flow from arterial spin labeling imaging. Voxel-wise comparisons were performed to identify inter-group differences in imaging measures, and the performance of differentiating these two disorders was estimated by receiver operating characteristic curves.

      Results

      Compared to MS, patients with AQP4-Ab negative NMOSD showed decreased MD and AD but increased MK and AK in white matter regions; and reduced FCS in the occipital cortex (P < 0.05, FWE corrected). The joint-use of these five imaging measures distinguished the two disorders with an accuracy of 94% (P < 0.001, 95%CI = 0.84–0.98). Other imaging measures showed no significant differences between the two patient groups.

      Conclusions

      The study showed less white matter damage and a more severe functional disconnection of the occipital cortex in patients with AQP4-Ab negative NMOSD compared to MS. The combined use of diffusion and functional connectivity could facilitate a better distinction between NMO and MS with seronegative AQP4-Ab in clinical management.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wingerchuk D.M.
        • Lennon V.A.
        • Lucchinetti C.F.
        • et al.
        The spectrum of neuromyelitis optica.
        Lancet Neurol. 2007; 6: 805-815
        • Palace J.
        • Leite M.I.
        • Nairne A.
        • Vincent A
        Interferon Beta treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers.
        Arch. Neurol. 2010; 67: 1016-1017
        • Lennon V.A.
        • Wingerchuk D.M.
        • Kryzer T.J.
        • et al.
        A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.
        Lancet. 2004; 364: 2106-2112
        • Waters P.
        • Reindl M.
        • Saiz A.
        • et al.
        Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica.
        J. Neurol. Neurosurg. Psychiatry. 2016; 87: 1005-1015
        • Matsushita T.
        • Isobe N.
        • Piao H.
        • et al.
        Reappraisal of brain MRI features in patients with multiple sclerosis and neuromyelitis optica according to anti-aquaporin-4 antibody status.
        J. Neurol. sci. 2010; 291: 37-43
        • Jurynczyk M.
        • Weinshenker B.
        • Akman-Demir G.
        • et al.
        Status of diagnostic approaches to AQP4-IgG seronegative NMO and NMO/MS overlap syndromes.
        J. Neurol. 2016; 263: 140-149
        • Kim S.H.
        • Kwak K.
        • Hyun J.W.
        • et al.
        Diffusion tensor imaging of normal-appearing white matter in patients with neuromyelitis optica spectrum disorder and multiple sclerosis.
        Eur. J. Neurol. 2017; 24: 966-973
        • Eshaghi A.
        • Wottschel V.
        • Cortese R.
        • et al.
        Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest.
        Neurology. 2016; 87: 2463-2470
        • Qian W.
        • Chan K.H.
        • Hui E.S.
        • et al.
        Application of diffusional kurtosis imaging to detect occult brain damage in multiple sclerosis and neuromyelitis optica.
        NMR Biomed. 2016; 29: 1536-1545
        • Ota M.
        • Sato N.
        • Okamoto T.
        • et al.
        Neuromyelitis optica spectrum disorder and multiple sclerosis: differentiation by a multimodal approach.
        Mult. Scler. Relat. Disord. 2015; 4: 515-520
        • Liu Y.
        • Duan Y.
        • Huang J.
        • et al.
        Multimodal quantitative MR imaging of the thalamus in multiple sclerosis and neuromyelitis optica.
        Radiology. 2015; 277: 784-792
        • Wingerchuk D.M.
        • Banwell B.
        • Bennett J.L.
        • et al.
        International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.
        Neurology. 2015; 85: 177-189
        • Polman C.H.
        • Reingold S.C.
        • Banwell B.
        • et al.
        Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria.
        Ann. Neurol. 2011; 69: 292-302
        • Sun J.
        • Sun X.
        • Zhang N.
        • et al.
        Analysis of brain and spinal cord lesions to occult brain damage in seropositive and seronegative neuromyelitis optica.
        Eur. J. Neurol. 2017; 94: 25-30
        • Smith S.M.
        • Nichols T.E
        Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference.
        Neuroimage. 2009; 44: 83-98
        • Faul F.
        • Erdfelder E.
        • Lang A.-G.
        • Buchner A
        G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences.
        Behav. Res. Methods. 2007; 39: 175-191
        • Wu E.X.
        • Cheung M.M.
        MR diffusion kurtosis imaging for neural tissue characterization.
        NMR Biomed. 2010; 23: 836-848
        • Liu Y.
        • Duan Y.
        • He Y.
        • et al.
        Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: a TBSS study.
        Eur. J. Neurol. 2012; 81: 2826-2832
        • Rueda Lopes F.C.
        • Doring T.
        • Martins C.
        • et al.
        The role of demyelination in neuromyelitis optica damage: diffusion-tensor MR imaging study.
        Radiology. 2012; 263: 235-242
        • Song S.K.
        • Sun S.W.
        • Ju W.K.
        • Lin S.J.
        • Cross A.H.
        • Neufeld A.H
        Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia.
        Neuroimage. 2003; 20: 1714-1722
        • Klistorner A.
        • Vootakuru N.
        • Wang C.
        • et al.
        Decoding diffusivity in multiple sclerosis: analysis of optic radiation lesional and non-lesional white matter.
        PLoS ONE. 2015; 10e0122114
        • de Kouchkovsky I.
        • Fieremans E.
        • Fleysher L.
        • et al.
        Quantification of normal-appearing white matter tract integrity in multiple sclerosis: a diffusion kurtosis imaging study.
        J. Neurol. 2016; 263: 1146-1155
        • Spampinato M.V.
        • Kocher M.R.
        • Jensen J.H.
        • et al.
        Diffusional kurtosis imaging of the corticospinal tract in multiple sclerosis: association with neurologic disability.
        AJNR Am. J. Neuroradiol. 2017; 38: 1494-1500
        • Doring T.M.
        • Lopes F.C.
        • Kubo T.T.
        • et al.
        Neuromyelitis optica: a diffusional kurtosis imaging study.
        AJNR Am. J. Neuroradiol. 2014; 35: 2287-2292
        • Kimura M.C.
        • Doring T.M.
        • Rueda F.C.
        • et al.
        In vivo assessment of white matter damage in neuromyelitis optica: a diffusion tensor and diffusion kurtosis MR imaging study.
        J. Neurol. Sci. 2014; 345: 172-175
        • Zhu J.
        • Zhuo C.
        • Qin W.
        • et al.
        Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia.
        NeuroImage Clin. 2015; 7: 170-176
        • Liu Y.
        • Liang P.
        • Duan Y.
        • et al.
        Abnormal baseline brain activity in patients with neuromyelitis optica: a resting-state fMRI study.
        Eur.J. Radiol. 2011; 80: 407-411
        • Liu Y.
        • Jiang X.
        • Butzkueven H.
        • et al.
        Multimodal characterization of gray matter alterations in neuromyelitis optica.
        Mult. Scler. 2018; 24: 1308-1316
        • Gallo A.
        • Esposito F.
        • Sacco R.
        • et al.
        Visual resting-state network in relapsing-remitting MS with and without previous optic neuritis.
        Neurology. 2012; 79: 1458-1465
        • Kitley J.
        • Evangelou N.
        • Kuker W.
        • et al.
        Catastrophic brain relapse in seronegative NMO after a single dose of natalizumab.
        J. Neurol. Sci. 2014; 339: 223-225
        • Kleiter I.
        • Hellwig K.
        • Berthele A.
        • et al.
        Failure of natalizumab to prevent relapses in neuromyelitis optica.
        Arch. Neurol. 2012; 69: 239-245
        • Jacob A.
        • Hutchinson M.
        • Elsone L.
        • et al.
        Does natalizumab therapy worsen neuromyelitis optica.
        Neurology. 2012; 79: 1065-1066
        • Matthews L.
        • Marasco R.
        • Jenkinson M.
        • et al.
        Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution.
        Neurology. 2013; 80: 1330-1337
        • Jurynczyk M.
        • Tackley G.
        • Kong Y.
        • et al.
        Brain lesion distribution criteria distinguish MS from AQP4-antibody NMOSD and MOG-antibody disease.
        J. Neurol. Neurosurg. Psychiatry. 2017; 88: 132-136
        • Kremer S.
        • Renard F.
        • Achard S.
        • et al.
        Use of advanced magnetic resonance imaging techniques in neuromyelitis optica spectrum disorder.
        JAMA Neurol. 2015; 72: 815-822
        • Solomon A.J.
        • Watts R.
        • Dewey B.E.
        • Reich D.S
        MRI evaluation of thalamic volume differentiates MS from common mimics.
        Neurol. Neuroimmunol. Neuroinflamm. 2017; 4: e387
        • Geraldes R.
        • Ciccarelli O.
        • Barkhof F.
        • et al.
        The current role of MRI in differentiating multiple sclerosis from its imaging mimics.
        Nat. Rev. Neurol. 2018; 14: 199-213
        • Finke C.
        • Heine J.
        • Pache F.
        • et al.
        Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD.
        Neurol. Neuroimmunol. Neuroinflamm. 2016; 3: e229
        • Hyun J.W.
        • Park G.
        • Kwak K.
        • et al.
        Deep gray matter atrophy in neuromyelitis optica spectrum disorder and multiple sclerosis.
        Eur. J. Neurol. 2017; 24: 437-445
        • Pache F.
        • Zimmermann H.
        • Finke C.
        • et al.
        Brain parenchymal damage in neuromyelitis optica spectrum disorder - A multimodal MRI study.
        Eur. Radiol. 2016; 26: 4413-4422
        • Kim S.H.
        • Kwak K.
        • Hyun J.W.
        • et al.
        Diffusion tensor imaging of normal-appearing white matter in patients with neuromyelitis optica spectrum disorder and multiple sclerosis.
        Eur .J. Neurol. 2017; 24: 966-973
        • Kuchling J.
        • Backner Y.
        • Oertel F.C.
        • et al.
        Comparison of probabilistic tractography and tract-based spatial statistics for assessing optic radiation damage in patients with autoimmune inflammatory disorders of the central nervous system.
        Neuroimage Clin. 2018; 19: 538-550
        • von Glehn F.
        • Jarius S.
        • Cavalcanti Lira R.P.
        • et al.
        Structural brain abnormalities are related to retinal nerve fiber layer thinning and disease duration in neuromyelitis optica spectrum disorders.
        Mult. Scler. 2014; 20: 1189-1197
        • Finke C.
        • Zimmermann H.
        • Pache F.
        • et al.
        Association of visual impairment in neuromyelitis optica spectrum disorder with visual network reorganization.
        JAMA Neurol. 2018; 75: 296-303
        • Pasquier B.
        • Borisow N.
        • Rasche L.
        • et al.
        Quantitative 7T MRI does not detect occult brain damage in neuromyelitis optica.
        Neurol. Neuroimmunol. Neuroinflamm. 2019; 6: e541
        • Jarius S.
        • Paul F.
        • Aktas O.
        • et al.
        MOG encephalomyelitis: international recommendations on diagnosis and antibody testing.
        J. Neuroinflamm. 2018; 15: 134
        • Zamvil S.S.
        • Slavin A.J.
        Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder?.
        Neurol. Neuroimmunol. Neuroinflamm. 2015; 2: e62
        • Pittock S.J.
        • Berthele A.
        • Fujihara K.
        • et al.
        Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder.
        N. Engl. J. Med. 2019; 381: 614-625