Advertisement
Review article| Volume 38, 101858, February 2020

Detection of autoantibodies in central nervous system inflammatory disorders: Clinical application of cell-based assays

  • Rachel Dias Molina
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Lucas Piccoli Conzatti
    Affiliations
    São Lucas Hospital, Neurology Service, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Ana Paula Bornes da Silva
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Leise Daniele Sckenal Goi
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Bruna Klein da Costa
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    São Lucas Hospital, Neurology Service, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Denise Cantarelli Machado
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Douglas Kazutoshi Sato
    Correspondence
    Corresponding author.
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    São Lucas Hospital, Neurology Service, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
Published:November 15, 2019DOI:https://doi.org/10.1016/j.msard.2019.101858

      Highlights

      • Autoantibodies have emerged as biomarkers for neuroimmunological diseases.
      • Cell-based assays (CBA) are useful in clinical practice for cell-surface antigens.
      • ELISA and western-blot may be inaccurate for conformational sensitive antibodies.
      • CBA is used for detection of aquaporin-4-IgG, MOG-IgG and other autoantibodies.

      Abstract

      The identification of autoantibodies in central nervous system (CNS) inflammatory disorders improves diagnostic accuracy and the identification of patients with a relapsing disease. Usual methods to detect autoantibodies are usually divided into 3 categories: tissue-based assays, protein-based assays and cell-based assays (CBA). Tissue-based assays are commonly used for initial identification of autoantibodies based on staining patterns and co-localization. Once the antigen is known, autoantibodies can be detected using other antigen-specific methods based on recombinant proteins and CBA using transfected cells expressing the protein in their cell membranes. Compared to traditional methods using recombinant proteins such as ELISA and western blot, the CBA have advantage of detecting conformational sensitive antibodies using natively folded proteins in the cell membrane. This article reviews the utility of CBA into the clinical practice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amatoury M.
        • Merheb V.
        • Langer J.
        • Wang X.M.
        • Dale R.C.
        • Brilot F.
        High-throughput flow cytometry cell-based assay to detect antibodies to N-Methyl-D-aspartate receptor or dopamine-2 receptor in human serum.
        J. Vis. Exp. 2013; : 1-7
      1. Bass, J., Wilkinson, D., Rankin, D., Phillips, B., Szewczyk, N., Smith, K., Atherton, P., 2017. An overview of technical considerations for western blotting applications to physiological research27, 69–81.

        • Baumann M.
        • Hennes E.-M.
        • Schanda K.
        • Karenfort M.
        • Kornek B.
        • Seidl R.
        • Diepold K.
        • Lauffer H.
        • Marquardt I.
        • Strautmanis J.
        • Syrbe S.
        • Vieker S.
        • Ho ftberger R.
        • Reindl M.
        • Rostasy K.
        Children with multiphasic disseminated encephalomyelitis and antibodies to the myelin oligodendrocyte glycoprotein (MOG): extending the spectrum of MOG antibody positive diseases.
        Mult. Scler. J. 2016; 22: 1821-1829
        • Brilot F.
        • Dale R.C.
        • Selter R.C.
        • Grummel V.
        • Kalluri S.R.
        • Aslam M.
        • Phil M.
        • Busch V.
        • Zhou D.
        • Cepok S.
        • Hemmer B.
        Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease.
        Ann. Neurol. 2009; 66: 833-842
        • Chalmoukou K.
        • Alexopoulos H.
        • Akrivou S.
        • Stathopoulos P.
        • Reindl M.
        • Dalakas M.C.
        Anti-MOG antibodies are frequently associated with steroid-sensitive recurrent optic neuritis.
        Neurol. Neuroimmunol. NeuroInflammation. 2015; 2: e131
        • Chan K.H.
        • Kwan J.S.C.
        • Ho P.W.L.
        • Ho J.W.M.
        • Chu A.C.Y.
        • Ramsden D.B.
        Aquaporin-4 autoantibodies in neuromyelitis optica spectrum disorders: comparison between tissue-based and cell-based indirect immunofluorescence assays.
        J. Neuroinflammation. 2010; 7: 1-9
        • Cobo-Calvo Á.
        • Sepúlveda M.
        • Bernard-Valnet R.
        • Ruiz A.
        • Brassat D.
        • Martínez-Yélamos S.
        • Saiz A.
        • Marignier R.
        Antibodies to myelin oligodendrocyte glycoprotein in aquaporin 4 antibody seronegative longitudinally extensive transverse myelitis: clinical and prognostic implications.
        Mult. Scler. J. 2016; 22: 312-319
        • Dalmau J.
        • Geis C.
        • Graus F.
        Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system.
        Physiol. Rev. 2017; 97: 839-887
        • Dalmau J.
        • Gleichman A.J.
        • Hughes E.G.
        • Rossi J.E.
        • Peng X.
        • Dessain S.K.
        • Rosenfeld M.R.
        • Balice-gordon R.
        • Lynch D.R.
        Anti-NMDA-receptor encephalitic: case series and analysis of the effects of antibodies.
        Lancet Neurol. 2008; 7: 1091-1098
        • Dalmau J.
        • Graus F.
        Antibody-mediated encephalitis.
        N. Engl. J. Med. 2018; 378: 840-851
        • Dalmau J.
        • Tüzün E.
        • Wu H.Y.
        • Masjuan J.
        • Rossi J.E.
        • Voloschin A.
        • Baehring J.M.
        • Shimazaki H.
        • Koide R.
        • King D.
        • Mason W.
        • Sansing L.H.
        • Dichter M.A.
        • Rosenfeld M.R.
        • Lynch D.R.
        Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma.
        Ann. Neurol. 2007; 61: 25-36
        • Di Pauli F.
        • Berger T.
        Myelin oligodendrocyte glycoprotein antibody-associated disorders: toward a new spectrum of inflammatory demyelinating CNS disorders?.
        Front. Immunol. 2018; 9: 2753
        • Di Pauli F.
        • Mader S.
        • Rostasy K.
        • Schanda K.
        • Bajer-Kornek B.
        • Ehling R.
        • Deisenhammer F.
        • Reindl M.
        • Berger T.
        Temporal dynamics of anti-MOG antibodies in CNS demyelinating diseases.
        Clin. Immunol. 2011; 138: 247-254
        • dos Passos G.R.
        • Oliveira L.M.
        • da Costa B.K.
        • Apostolos-Pereira S.L.
        • Callegaro D.
        • Fujihara K.
        • Sato D.K.
        MOG-IgG-associated optic neuritis, encephalitis, and myelitis: lessons learned from neuromyelitis optica spectrum disorder.
        Front. Neurol. 2018; 9: 1-10
        • Engvall E.
        • Perlmann P.
        Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes.
        J. Immunol. 1972; 109: 129-135
        • Fazio R.
        • Malosio M.L.
        • Lampasona V.
        • De Feo D.
        • Privitera D.
        • Marnetto F.
        • Centonze D.
        • Ghezzi A.
        • Comi G.
        • Furlan R.
        • Martino G.
        Antiacquaporin 4 antibodies detection by different techniques in neuromyelitis optica patients.
        Mult. Scler. 2009; 15: 1153-1163
        • Fryer J.P.
        • Lennon V.A.
        • Pittock S.J.
        • Jenkins S.M.
        • Fallier-Becker P.
        • Clardy S.L.
        • Horta E.
        • Jedynak E.A.
        • Lucchinetti C.F.
        • Shuster E.A.
        • Weinshenker B.G.
        • Wingerchuk D.M.
        • McKeon A.
        AQP4 autoantibody assay performance in clinical laboratory service.
        Neurol. Neuroimmunol. NeuroInflammation. 2014; 1 (e11)
        • Gastaldi M.
        • Nosadini M.
        • Spatola M.
        • Sartori S.
        • Franciotta D.
        N-methyl-D-aspartate receptor encephalitis: laboratory diagnostics and comparative clinical features in adults and children.
        Expert Rev. Mol. Diagn. 2018; 18: 181-193
        • Graus F.
        • Titulaer M.J.
        • Balu R.
        • Benseler S.
        • Bien C.G.
        • Cellucci T.
        • Cortese I.
        • Dale R.C.
        • Gelfand J.M.
        • Geschwind M.
        • Glaser C.A.
        • Honnorat J.
        • Höftberger R.
        • Iizuka T.
        • Irani S.R.
        • Lancaster E.
        • Leypoldt F.
        • Prüss H.
        • Rae-Grant A.
        • Reindl M.
        • Rosenfeld M.R.
        • Rostásy K.
        • Saiz A.
        • Venkatesan A.
        • Vincent A.
        • Wandinger K.P.
        • Waters P.
        • Dalmau J.
        A clinical approach to diagnosis of autoimmune encephalitis.
        Lancet Neurol. 2016; 15: 391-404
        • Höftberger R.
        • Sabater L.
        • Marignier R.
        • Aboul-Enein F.
        • Bernard-Valnet R.
        • Rauschka H.
        • Ruiz A.
        • Blanco Y.
        • Graus F.
        • Dalmau J.
        • Saiz A.
        An optimized immunohistochemistry technique improves NMO-IGG detection: study comparison with cell-based assays.
        PLoS ONE. 2013; 8: 6-11
        • Hu W.
        • Lucchinetti C.F.
        The pathological spectrum of CNS inflammatory demyelinating diseases.
        Semin. Immunopathol. 2009; 31: 439-453
        • Jarius S.
        • Franciotta D.
        • Paul F.
        • Bergamaschi R.
        • Rommer P.S.
        • Ruprecht K.
        • Ringelstein M.
        • Aktas O.
        • Kristoferitsch W.
        • Wildemann B.
        Testing for antibodies to human aquaporin-4 by ELISA: sensitivity, specificity, and direct comparison with immunohistochemistry.
        J. Neurol. Sci. 2012; 320: 32-37
        • Jarius S.
        • Wildemann B.
        Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature.
        Brain Pathol. 2013; 23: 661-683
        • Jarius S.
        • Wildemann B.
        AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance.
        Nat. Rev. Neurol. 2010; 6: 383-392
        • Jensen E.C.
        The basics of western blotting.
        Anat. Rec. 2012; 295: 369-371
        • Jurynczyk M.
        • Messina S.
        • Woodhall M.R.
        • Raza N.
        • Everett R.
        • Roca-Fernandez A.
        • Tackley G.
        • Hamid S.
        • Sheard A.
        • Reynolds G.
        • Chandratre S.
        • Hemingway C.
        • Jacob A.
        • Vincent A.
        • Leite M.I.
        • Waters P.
        • Palace J.
        Clinical presentation and prognosis in MOG-antibody disease: a UK study.
        Brain. 2017; 140: 3128-3138
        • Kang E.
        • Min J.
        • Lee K.H.
        • Kim B.J.
        Clinical usefulness of cell-based indirect immunofluorescence assay for the detection of aquaporin-4 antibodies in neuromyelitis optica spectrum disorder.
        Ann. Lab. Med. 2012; 32: 331-338
        • Kim Y.J.
        • Jung S.W.
        • Kim Y.
        • Park Y.J.
        • Han K.
        • Oh E.J.
        Detection of anti-aquaporin-4 antibodies in neuromyelitis optica: comparison of tissue-based and cell-based indirect immunofluorescence assays and Elisa.
        J. Clin. Lab. Anal. 2012; 26: 184-189
        • Kuhle J.
        • Pohl C.
        • Mehling M.
        • Edan G.
        • Freedman M.S.
        • Hartung H.-.P.
        • Polman C.H.
        • Miller D.H.
        • Montalban X.
        • Barkhof F.
        • Bauer L.
        • Dahms S.
        • Lindberg R.
        • Kappos L.
        • Sandbrink R.
        Lack of association between antimyelin antibodies and progression to multiple sclerosis.
        N. Engl. J. Med. 2007; 356: 371-378
        • Lai M.
        • Hughes E.G.
        • Peng X.
        • Zhou L.
        • Gleichman A.J.
        • Shu H.
        • Matà S.
        • Kremens D.
        • Vitaliani R.
        • Geschwind M.D.
        • Bataller L.
        • Kalb R.G.
        • Davis R.
        • Graus F.
        • Lynch D.R.
        • Balice-Gordon R.
        • Dalmau J.
        AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location.
        Ann. Neurol. 2009; 65: 424-434
        • Lennon P.V.A.
        • Wingerchuk D.M.
        • Kryzer T.J.
        • Pittock S.J.
        • Lucchinetti C.F.
        • Fujihara K.
        • Nakashima I.
        • Weinshenker B.G.
        A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.
        Lancet. 2004; 364: 2106-2112
        • Lennon V.A.
        • Kryzer T.J.
        • Pittock S.J.
        • Verkman A.S.
        • Hinson S.R.
        IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel.
        J. Exp. Med. 2005; 202: 473-477
        • Manole E.
        • Popescu I.D.
        • Constantin C.
        • Mihai S.
        • Gaina G.F.
        • Codrici E.
        • Bastian A.E.
        • Neagu M.T.
        Immunoassay techniques highlighting biomarkers in immunogenetic diseases.
        IntechOpen. 2018;
        • McCracken L.
        • Zhang J.
        • Greene M.
        • Crivaro A.
        • Gonzalez J.
        • Kamoun M.
        • Lancaster E.
        Improving the antibody-based evaluation of autoimmune encephalitis.
        Neurol. Neuroimmunol. NeuroInflammation. 2017; 4: 1-7
      2. Mclaughlin, K.A., Chitnis, T., Ϧ, J.N., Franz, B., Mcardel, S., Kuhle, J., Kappos, L., Rostasy, K., Gagne, D., Ness, J.M., Ϧϧ, S.T., Connor, K.C.O., Viglietta, V., Wong, S.J., Tavakoli, N.P., Seze, J.De, Samia, J., Bar-or, A., Hafler, D.A., Banwell, B., Kai, W., 2009. Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis183, 4067–4076.

        • Nakajima H.
        • Motomura M.
        • Tanaka K.
        • Fujikawa A.
        • Nakata R.
        • Maeda Y.
        • Shima T.
        • Mukaino A.
        • Yoshimura S.
        • Miyazaki T.
        • Shiraishi H.
        • Kawakami A.
        • Tsujino A.
        Antibodies to myelin oligodendrocyte glycoprotein in idiopathic optic neuritis.
        BMJ Open. 2015; 5 (e007766)
        • O'Connor K.C.
        • McLaughlin K.A.
        • De Jager P.L.
        • Chitnis T.
        • Bettelli E.
        • Xu C.
        • Robinson W.H.
        • Cherry S.V.
        • Bar-Or A.
        • Banwell B.
        • Fukaura H.
        • Fukazawa T.
        • Tenembaum S.
        • Wong S.J.
        • Tavakoli N.P.
        • Idrissova Z.
        • Viglietta V.
        • Rostasy K.
        • Pohl D.
        • Dale R.C.
        • Freedman M.
        • Steinman L.
        • Buckle G.J.
        • Kuchroo V.K.
        • Hafler D.A.
        • Wucherpfennig K.W.
        Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein.
        Nat. Med. 2007; 13: 211-217
        • Ogawa R.
        • Nakashima I.
        • Takahashi T.
        • Kaneko K.
        • Akaishi T.
        • Takai Y.
        • Sato D.K.
        • Nishiyama S.
        • Misu T.
        • Kuroda H.
        • Aoki M.
        • Fujihara K.
        MOG antibody-positive, benign, unilateral, cerebral cortical encephalitis with epilepsy. Persistent MOG-IGG positivity is a predictor of recurrence in MOG-IgG-associated optic neuritis, encephalitis and myelitis.
        Mult. Scler. J. 2017; : 1-8
        • Oliveira L.M.
        • Apostolos-Pereira S.L.
        • Pitombeira M.S.
        • Bruel Torretta P.H.
        • Callegaro D.
        • Sato D.K.
        Persistent MOG-IgG positivity is a predictor of recurrence in MOG-IgG-associated optic neuritis, encephalitis and myelitis.
        Mult. Scler. 2018; ([Epub ahead of print])1352458518811597https://doi.org/10.1177/1352458518811597
      3. Patrono, C., Peskar, B.A., 1987. Radioimmunoassay in basic and clinical pharmacology.

        • Paul F.
        • Jarius S.
        • Aktas O.
        • Bluthner M.
        • Bauer O.
        • Appelhans H.
        • Franciotta D.
        • Bergamaschi R.
        • Littleton E.
        • Palace J.
        • Seelig H.P.
        • Hohlfeld R.
        • Vincent A.
        • Zipp F.
        Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica.
        PLoS Med. 2007; 4: 669-674
        • Pittock S.J.
        • Lennon V.A.
        • Bakshi N.
        • Shen L.
        • McKeon A.
        • Quach H.
        • Briggs F.B.S.
        • Bernstein A.L.
        • Schaefer C.A.
        • Barcellos L.F.
        Seroprevalence of aquaporin-4-IgG in a northern California population representative cohort of multiple sclerosis.
        JAMA Neurol. 2014; 71: 1433-1436
        • Possee R.D.
        Baculoviruses as expression vectors.
        Curr. Opin. Biotechnol. 1997; 8: 569-572
        • Pröbstel A.K.
        • Dornmair K.
        • Bittner R.
        • Sperl P.
        • Jenne D.
        • Magalhaes S.
        • Villalobos A.
        • Breithaupt C.
        • Weissert R.
        • Jacob U.
        • Krumbholz M.
        • Kuempfel T.
        • Blaschek A.
        • Stark W.
        • Gärtner J.
        • Pohl D.
        • Rostasy K.
        • Weber F.
        • Forne I.
        • Khademi M.
        • Olsson T.
        • Brilot F.
        • Tantsis E.
        • Dale R.C.
        • Wekerle H.
        • Hohlfeld R.
        • Banwell B.
        • Bar-Or A.
        • Meinl E.
        • Derfuss T.
        Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis.
        Neurology. 2011; 77: 580-588
        • Ramanathan S.
        • Reddel S.W.
        • Henderson A.
        • Parratt J.D.E.
        • Barnett M.
        • Gatt P.N.
        • Merheb V.
        • Kumaran R.Y.A.
        • Pathmanandavel K.
        • Sinmaz N.
        • Ghadiri M.
        • Yiannikas C.
        • Vucic S.
        • Stewart G.
        • Bleasel A.F.
        • Booth D.
        • Fung V.S.C.
        • Dale R.C.
        • Brilot F.
        Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis.
        Neurol. Neuroimmunol. NeuroInflammation. 2014; 1: 1-12
        • Ramberger M.
        • Peschl P.
        • Schanda K.
        • Irschick R.
        • Höftberger R.
        • Deisenhammer F.
        • Rostásy K.
        • Berger T.
        • Dalmau J.
        • Reindl M.
        Comparison of diagnostic accuracy of microscopy and flow cytometry in evaluating N-methyl-D-aspartate receptor antibodies in serum using a live cell-based assay.
        PLoS ONE. 2015; 10: 1-18
        • Reindl M.
        • Di Pauli F.
        • Rostásy K.
        • Berger T.
        The spectrum of MOG autoantibody-associated demyelinating diseases.
        Nat. Rev. Neurol. 2013; 9: 455-461
        • Ricken G.
        • Schwaiger C.
        • De Simoni D.
        • Pichler V.
        • Lang J.
        • Glatter S.
        • Macher S.
        • Rommer P.S.
        • Scholze P.
        • Kubista H.
        • Koneczny I.
        • Höftberger R.
        Detection methods for autoantibodies in suspected autoimmune encephalitis.
        Front. Neurol. 2018; 9: 841
        • Sato D.K.
        • Callegaro D.
        • Lana-Peixoto M.A.
        • Waters P.J.
        • De Haidar Jorge F.M.
        • Takahashi T.
        • Nakashima I.
        • Apostolos- Pereira S.L.
        • Simm N.T.R.F.
        • Lino A.M.M.
        • Misu T.
        • Leite M.I.
        • Aoki M.
        • Fujihara K.
        Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders.
        Neurology. 2014; 82: 474-481
        • Takahashi T.
        • Fujihara K.
        • Nakashima I.
        • Misu T.
        • Miyazawa I.
        • Nakamura M.
        • Watanabe S.
        • Ishii N.
        • Itoyama Y.
        Establishment of a new sensitive assay for anti-human aquaporin-4 antibody in neuromyelitis optica.
        Tohoku J. Exp. Med. 2006; 210: 307-313
        • Takahashi T.
        • Fujihara K.
        • Nakashima I.
        • Misu T.
        • Miyazawa I.
        • Nakamura M.
        • Watanabe S.
        • Shiga Y.
        • Kanaoka C.
        • Fujimori J.
        • Sato S.
        • Itoyama Y.
        Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre.
        Brain. 2007; 130: 1235-1243
        • Tanaka M.
        • Tanaka K.
        Anti-MOG antibodies in adult patients with demyelinating disorders of the central nervous system.
        J. Neuroimmunol. 2014; 270: 98-99
        • Towbin H.
        • Staehelin T.
        • Gordon J.
        Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.
        Proc. Natl. Acad. Sci. U. S. A. 1979; 76: 4350-4354
        • Waters P.
        • Jarius S.
        • Littleton E.
        • Leite M.I.
        • Jacob S.
        • Gray B.
        • Geraldes R.
        • Vale T.
        • Jacob A.
        • Palace J.
        • Maxwell S.
        • Beeson D.
        • Vincent A.
        Aquaporin-4 antibodies in neuromyelitis optica and longitudinally extensive transverse myelitis.
        Arch. Neurol. 2008; 65: 913-919
        • Waters P.
        • Reindl M.
        • Saiz A.
        • Schanda K.
        • Tuller F.
        • Kral V.
        • Nytrova P.
        • Sobek O.
        • Nielsen H.H.
        • Barington T.
        • Lillevang S.T.
        • Illes Z.
        • Rentzsch K.
        • Berthele A.
        • Berki T.
        • Granieri L.
        • Bertolotto A.
        • Giometto B.
        • Zuliani L.
        • Hamann D.
        • Van Pelt E.D.
        • Hintzen R.
        • Höftberger R.
        • Costa C.
        • Comabella M.
        • Montalban X.
        • Tintoré M.
        • Siva A.
        • Altintas A.
        • Deniz G.
        • Woodhall M.
        • Palace J.
        • Paul F.
        • Hartung H.P.
        • Aktas O.
        • Jarius S.
        • Wildemann B.
        • Vedeler C.
        • Ruiz A.
        • Leite M.I.
        • Trillenberg P.
        • Probst M.
        • Saschenbrecker S.
        • Vincent A.
        • Marignier R.
        Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica.
        J. Neurol. Neurosurg. Psychiatry. 2016; 87: 1005-1015
        • Waters P.
        • Vincent A.
        Detection of anti-Aquaporin-4 antibodies in neuromyelitis optica: current status of the assays.
        Int. MS J. 2008; 15
        • Waters P.
        • Woodhall M.
        • O'Connor K.C.
        • Reindl M.
        • Lang B.
        • Sato D.K.
        • Jurynczyk M.
        • Tackley G.
        • Rocha J.
        • Takahashi T.
        • Misu T.
        • Nakashima I.
        • Palace J.
        • Fujihara K.
        • Isabel Leite M.
        • Vincent A.
        MOG cell-based assay detects non-MS patients with inflammatory neurologic disease.
        Neurol. Neuroimmunol. NeuroInflammation. 2015; 2 (e89)
        • Waters P.J.
        • McKeon A.
        • Leite M.I.
        • Rajasekharan S.
        • Lennon V.A.
        • Villalobos A.
        • Palace J.
        • Mandrekar J.N.
        • Vincent A.
        • Bar-Or A.
        • Pittock S.J.
        Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays.
        Neurology. 2012; 78: 665-671
        • Wingerchuk D.M.
        • Banwell B.
        • Bennett J.L.
        • Cabre P.
        • Carroll W.
        • Chitnis T.
        • De Seze J.
        • Fujihara K.
        • Greenberg B.
        • Jacob A.
        • Jarius S.
        • Lana-Peixoto M.
        • Levy M.
        • Simon J.H.
        • Tenembaum S.
        • Traboulsee A.L.
        • Waters P.
        • Wellik K.E.
        • Weinshenker B.G.
        International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.
        Neurology. 2015; 85: 177-189
        • Wolburg H.
        • Wolburg-Buchholz K.
        • Fallier-Becker P.
        • Noell S.
        • Mack A.F.
        Structure and functions of aquaporin-4-based orthogonal arrays of particles, in: international review of cell and molecular biology. institute of pathology, university of tubingen.
        Tubingen, Germany. 2011; : 1-41
        • Wynford-Thomas R.
        • Jacob A.
        • Tomassini V.
        Neurological update: MOG antibody disease.
        J. Neurol. 2019; 266: 1280-1286