Advertisement
Review article| Volume 38, 101858, February 2020

Detection of autoantibodies in central nervous system inflammatory disorders: Clinical application of cell-based assays

  • Rachel Dias Molina
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Lucas Piccoli Conzatti
    Affiliations
    São Lucas Hospital, Neurology Service, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Ana Paula Bornes da Silva
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Leise Daniele Sckenal Goi
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Bruna Klein da Costa
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    São Lucas Hospital, Neurology Service, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Denise Cantarelli Machado
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Douglas Kazutoshi Sato
    Correspondence
    Corresponding author.
    Affiliations
    Neuroinflammation and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    São Lucas Hospital, Neurology Service, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

    Medical School, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
    Search for articles by this author
Published:November 15, 2019DOI:https://doi.org/10.1016/j.msard.2019.101858

      Highlights

      • Autoantibodies have emerged as biomarkers for neuroimmunological diseases.
      • Cell-based assays (CBA) are useful in clinical practice for cell-surface antigens.
      • ELISA and western-blot may be inaccurate for conformational sensitive antibodies.
      • CBA is used for detection of aquaporin-4-IgG, MOG-IgG and other autoantibodies.

      Abstract

      The identification of autoantibodies in central nervous system (CNS) inflammatory disorders improves diagnostic accuracy and the identification of patients with a relapsing disease. Usual methods to detect autoantibodies are usually divided into 3 categories: tissue-based assays, protein-based assays and cell-based assays (CBA). Tissue-based assays are commonly used for initial identification of autoantibodies based on staining patterns and co-localization. Once the antigen is known, autoantibodies can be detected using other antigen-specific methods based on recombinant proteins and CBA using transfected cells expressing the protein in their cell membranes. Compared to traditional methods using recombinant proteins such as ELISA and western blot, the CBA have advantage of detecting conformational sensitive antibodies using natively folded proteins in the cell membrane. This article reviews the utility of CBA into the clinical practice.

      Keywords

      1. Autoantibodies as disease biomarkers

      The acquired inflammatory central nervous system (CNS) diseases encompass a heterogeneous group that includes multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), acute disseminated encephalomyelitis (ADEM) and autoimmune encephalitis, among others (
      • Hu W.
      • Lucchinetti C.F.
      The pathological spectrum of CNS inflammatory demyelinating diseases.
      ). Sometimes, the initial clinical presentation may overlap (e.g. isolated optic neuritis, myelitis or solitary brain lesions), making precise diagnosis very difficult without surrogate markers.
      In the recent years, autoantibodies have emerged as important tools as biomarkers for the diagnosis of an increasing number of diseases. In 2004, antibodies against aquaporin-4 (AQP4) water channels expressed in the end-foot processes of astrocytes were found in patients with NMOSD (
      • Lennon P.V.A.
      • Wingerchuk D.M.
      • Kryzer T.J.
      • Pittock S.J.
      • Lucchinetti C.F.
      • Fujihara K.
      • Nakashima I.
      • Weinshenker B.G.
      A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.
      ,
      • Lennon V.A.
      • Kryzer T.J.
      • Pittock S.J.
      • Verkman A.S.
      • Hinson S.R.
      IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel.
      ). In 2007, antibodies against N-methyl-D-aspartate receptor (NMDA) were described in paraneoplastic encephalitis associated with ovarian teratoma (
      • Dalmau J.
      • Tüzün E.
      • Wu H.Y.
      • Masjuan J.
      • Rossi J.E.
      • Voloschin A.
      • Baehring J.M.
      • Shimazaki H.
      • Koide R.
      • King D.
      • Mason W.
      • Sansing L.H.
      • Dichter M.A.
      • Rosenfeld M.R.
      • Lynch D.R.
      Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma.
      ,
      • Dalmau J.
      • Gleichman A.J.
      • Hughes E.G.
      • Rossi J.E.
      • Peng X.
      • Dessain S.K.
      • Rosenfeld M.R.
      • Balice-gordon R.
      • Lynch D.R.
      Anti-NMDA-receptor encephalitic: case series and analysis of the effects of antibodies.
      ), following an increasing number of autoimmune encephalitis associated with antibodies targeting neuronal surface antigens (
      • Dalmau J.
      • Graus F.
      Antibody-mediated encephalitis.
      ). More recently, antibody against myelin oligodendrocyte glycoprotein (MOG) have been associated with transverse myelitis (
      • Ramanathan S.
      • Reddel S.W.
      • Henderson A.
      • Parratt J.D.E.
      • Barnett M.
      • Gatt P.N.
      • Merheb V.
      • Kumaran R.Y.A.
      • Pathmanandavel K.
      • Sinmaz N.
      • Ghadiri M.
      • Yiannikas C.
      • Vucic S.
      • Stewart G.
      • Bleasel A.F.
      • Booth D.
      • Fung V.S.C.
      • Dale R.C.
      • Brilot F.
      Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis.
      ), optic neuritis (ON) (
      • Chalmoukou K.
      • Alexopoulos H.
      • Akrivou S.
      • Stathopoulos P.
      • Reindl M.
      • Dalakas M.C.
      Anti-MOG antibodies are frequently associated with steroid-sensitive recurrent optic neuritis.
      ;
      • Nakajima H.
      • Motomura M.
      • Tanaka K.
      • Fujikawa A.
      • Nakata R.
      • Maeda Y.
      • Shima T.
      • Mukaino A.
      • Yoshimura S.
      • Miyazaki T.
      • Shiraishi H.
      • Kawakami A.
      • Tsujino A.
      Antibodies to myelin oligodendrocyte glycoprotein in idiopathic optic neuritis.
      ), ADEM (
      • O'Connor K.C.
      • McLaughlin K.A.
      • De Jager P.L.
      • Chitnis T.
      • Bettelli E.
      • Xu C.
      • Robinson W.H.
      • Cherry S.V.
      • Bar-Or A.
      • Banwell B.
      • Fukaura H.
      • Fukazawa T.
      • Tenembaum S.
      • Wong S.J.
      • Tavakoli N.P.
      • Idrissova Z.
      • Viglietta V.
      • Rostasy K.
      • Pohl D.
      • Dale R.C.
      • Freedman M.
      • Steinman L.
      • Buckle G.J.
      • Kuchroo V.K.
      • Hafler D.A.
      • Wucherpfennig K.W.
      Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein.
      ;
      • Di Pauli F.
      • Berger T.
      Myelin oligodendrocyte glycoprotein antibody-associated disorders: toward a new spectrum of inflammatory demyelinating CNS disorders?.
      ), cortical encephalitis (
      • Ogawa R.
      • Nakashima I.
      • Takahashi T.
      • Kaneko K.
      • Akaishi T.
      • Takai Y.
      • Sato D.K.
      • Nishiyama S.
      • Misu T.
      • Kuroda H.
      • Aoki M.
      • Fujihara K.
      MOG antibody-positive, benign, unilateral, cerebral cortical encephalitis with epilepsy. Persistent MOG-IGG positivity is a predictor of recurrence in MOG-IgG-associated optic neuritis, encephalitis and myelitis.
      ) and antibodies to aquaporin-4 (AQP4-Ab) seronegative NMOSD (
      • Sato D.K.
      • Callegaro D.
      • Lana-Peixoto M.A.
      • Waters P.J.
      • De Haidar Jorge F.M.
      • Takahashi T.
      • Nakashima I.
      • Apostolos- Pereira S.L.
      • Simm N.T.R.F.
      • Lino A.M.M.
      • Misu T.
      • Leite M.I.
      • Aoki M.
      • Fujihara K.
      Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders.
      ).
      Identification of these autoantibodies as biomarkers can not only help us better understand the underlying mechanism of each disorder, but also improve diagnostic accuracy, stratify prognosis (including the risk of a relapsing disease) and even help developing new treatments targeting specific molecules. In this review, we will describe the main techniques for the detection of autoantibodies, specially the clinical application of cell-based assays in neurological diseases.

      2. Identification of antibody in CNS inflammatory disorders

      Over 40 different methods have been described to identify specific autoantibodies. Some of these tests are developed using in-house research protocols, others are already commercially available. In common, all of them require the binding of patient's antibody to animal tissue slices, recombinant proteins (
      • Lennon P.V.A.
      • Wingerchuk D.M.
      • Kryzer T.J.
      • Pittock S.J.
      • Lucchinetti C.F.
      • Fujihara K.
      • Nakashima I.
      • Weinshenker B.G.
      A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.
      ) or transfected cells expressing the protein of interest in the membrane surface (
      • Takahashi T.
      • Fujihara K.
      • Nakashima I.
      • Misu T.
      • Miyazawa I.
      • Nakamura M.
      • Watanabe S.
      • Ishii N.
      • Itoyama Y.
      Establishment of a new sensitive assay for anti-human aquaporin-4 antibody in neuromyelitis optica.
      ,
      • Takahashi T.
      • Fujihara K.
      • Nakashima I.
      • Misu T.
      • Miyazawa I.
      • Nakamura M.
      • Watanabe S.
      • Shiga Y.
      • Kanaoka C.
      • Fujimori J.
      • Sato S.
      • Itoyama Y.
      Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre.
      ;
      • Waters P.
      • Jarius S.
      • Littleton E.
      • Leite M.I.
      • Jacob S.
      • Gray B.
      • Geraldes R.
      • Vale T.
      • Jacob A.
      • Palace J.
      • Maxwell S.
      • Beeson D.
      • Vincent A.
      Aquaporin-4 antibodies in neuromyelitis optica and longitudinally extensive transverse myelitis.
      ). These assays can be divided into three categories: tissue-based assays, protein-based assays and cell-based assays (CBA) (
      • Wolburg H.
      • Wolburg-Buchholz K.
      • Fallier-Becker P.
      • Noell S.
      • Mack A.F.
      Structure and functions of aquaporin-4-based orthogonal arrays of particles, in: international review of cell and molecular biology. institute of pathology, university of tubingen.
      ).

      2.1 Tissue-based assays

      Tissue-based immunohistochemistry (TBI) assays use animal tissue sections (e.g. brain slices from mouse, rat or monkeys) with a few micrometers of thickness. These slices are chemically fixed and pre-treated to reduce unspecific binding. After these slices have been exposed to diluted patient serum samples, they are labelled with a secondary anti-human antibody conjugated to fluorophores or non-fluorescent peroxidase-conjugated polymer (conventional immunohistochemistry) (
      • Jarius S.
      • Wildemann B.
      Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature.
      ). The immunofluorescence techniques have advantage of allowing co-localization of different antibodies, allowing the confirmation that the human antibody is binding at the same antigen from a well-characterized monoclonal antibody produced against it (e.g. aquaporin-4, NMDA receptor Glu1 subunit).
      TBI assays are commonly used for initial identification of autoantibodies based on staining patterns for unknown CNS antigens. The potential antigen can be identified by the mass-spectroscopy or co-localization using a monoclonal antibody using immunofluorescence with confocal laser microscopy. However, TBI results interpretation is subjective and requires an experienced observer to discriminate specific and unspecific binding patterns. In addition, sensitivity can be very low, and TBI protocols are time- and resource-consuming (
      • Fazio R.
      • Malosio M.L.
      • Lampasona V.
      • De Feo D.
      • Privitera D.
      • Marnetto F.
      • Centonze D.
      • Ghezzi A.
      • Comi G.
      • Furlan R.
      • Martino G.
      Antiacquaporin 4 antibodies detection by different techniques in neuromyelitis optica patients.
      ;
      • Chan K.H.
      • Kwan J.S.C.
      • Ho P.W.L.
      • Ho J.W.M.
      • Chu A.C.Y.
      • Ramsden D.B.
      Aquaporin-4 autoantibodies in neuromyelitis optica spectrum disorders: comparison between tissue-based and cell-based indirect immunofluorescence assays.
      ).

      2.2 Protein-based assays

      2.2.1 Enzyme-Linked Immunosorbent Assay

      Compared to other tests, ELISA is a simple method widely commercially available in routine clinical laboratories, as it does not require cutting-edge research laboratory resources. ELISA usually uses coated wells with recombinant proteins or linear peptides produced in transfected bacteria (e.g. E. coli) or baculovirus-infected insect cells (
      • Engvall E.
      • Perlmann P.
      Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes.
      ;
      • Possee R.D.
      Baculoviruses as expression vectors.
      ;
      • Manole E.
      • Popescu I.D.
      • Constantin C.
      • Mihai S.
      • Gaina G.F.
      • Codrici E.
      • Bastian A.E.
      • Neagu M.T.
      Immunoassay techniques highlighting biomarkers in immunogenetic diseases.
      ).
      ELISA-based antibody assays usually have a low variability between laboratories and allows high-output testing of a large number of samples, since it can be fully-automated. However, it cannot quantify samples that exceed the reference range of its standard curve (
      • Jarius S.
      • Franciotta D.
      • Paul F.
      • Bergamaschi R.
      • Rommer P.S.
      • Ruprecht K.
      • Ringelstein M.
      • Aktas O.
      • Kristoferitsch W.
      • Wildemann B.
      Testing for antibodies to human aquaporin-4 by ELISA: sensitivity, specificity, and direct comparison with immunohistochemistry.
      ).
      The test has a sensitivity usually is higher than IHC, as the antigen concentration many times higher than it is expressed on normal tissue (
      • Jarius S.
      • Franciotta D.
      • Paul F.
      • Bergamaschi R.
      • Rommer P.S.
      • Ruprecht K.
      • Ringelstein M.
      • Aktas O.
      • Kristoferitsch W.
      • Wildemann B.
      Testing for antibodies to human aquaporin-4 by ELISA: sensitivity, specificity, and direct comparison with immunohistochemistry.
      ). However, ELISA-based antibody assays may not discriminate unspecific binding patterns and have higher rate false-positive results. Moreover, ELISA is not suitable for the detection of conformational sensitive antibodies, which requires expression of human protein in the cellular membrane of eukaryotic cells. In the study by
      • Pittock S.J.
      • Lennon V.A.
      • Bakshi N.
      • Shen L.
      • McKeon A.
      • Quach H.
      • Briggs F.B.S.
      • Bernstein A.L.
      • Schaefer C.A.
      • Barcellos L.F.
      Seroprevalence of aquaporin-4-IgG in a northern California population representative cohort of multiple sclerosis.
      , it was seen that in a cohort of 1040 MS cases, 7 patients demonstrated AQP4-Ab positivity by CBA and ELISA assays. The frequency of a false-positive result for both assays was 0.5% (ELISA) and 0.1% (CBA) demonstrating the superior specificity of CBA (
      • Pittock S.J.
      • Lennon V.A.
      • Bakshi N.
      • Shen L.
      • McKeon A.
      • Quach H.
      • Briggs F.B.S.
      • Bernstein A.L.
      • Schaefer C.A.
      • Barcellos L.F.
      Seroprevalence of aquaporin-4-IgG in a northern California population representative cohort of multiple sclerosis.
      ). Moreover,
      • Di Pauli F.
      • Mader S.
      • Rostasy K.
      • Schanda K.
      • Bajer-Kornek B.
      • Ehling R.
      • Deisenhammer F.
      • Reindl M.
      • Berger T.
      Temporal dynamics of anti-MOG antibodies in CNS demyelinating diseases.
      found discordant results when comparing samples tested using CBA and ELISA for MOG-Ab. Unlike ELISA did not correlate with the disease groups (
      • Di Pauli F.
      • Mader S.
      • Rostasy K.
      • Schanda K.
      • Bajer-Kornek B.
      • Ehling R.
      • Deisenhammer F.
      • Reindl M.
      • Berger T.
      Temporal dynamics of anti-MOG antibodies in CNS demyelinating diseases.
      ).

      2.2.2 Western blot

      Western Blot (WB) uses proteins extracted from a protein lysate from cells expressing the targeted protein. After the exposition to the patient sample, proteins are separated by gel electrophoresis based on their weight and electrical properties (
      • Towbin H.
      • Staehelin T.
      • Gordon J.
      Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.
      ;
      • Jensen E.C.
      The basics of western blotting.
      ). The proteins are then transferred to a nitrocellulose or polyvinylidene fluoride (PVDF) membrane, blocked to reduce nonspecific binding of proteins, incubated with a peroxidase-labeled antibody, and protein line blots can be visualized by chemiluminescence (
      • Manole E.
      • Popescu I.D.
      • Constantin C.
      • Mihai S.
      • Gaina G.F.
      • Codrici E.
      • Bastian A.E.
      • Neagu M.T.
      Immunoassay techniques highlighting biomarkers in immunogenetic diseases.
      ).
      WB is useful to confirm the antibody binding to single or multiple proteins that may be present in a single sample. However, since WB requires protein denaturation, it is not suitable for conformational sensitive antibodies. Moreover, WB assays may have nonspecific protein binding, leading to a lower specificity compared to assays using natively folded membrane expressed proteins (

      Bass, J., Wilkinson, D., Rankin, D., Phillips, B., Szewczyk, N., Smith, K., Atherton, P., 2017. An overview of technical considerations for western blotting applications to physiological research27, 69–81.

      ) .

      2.2.3 Fluorescence immunoprecipitation assay

      Fluorescence immunoprecipitation assay (FIPA) uses recombinant proteins based on the protein of interest tagged with a fluorescent protein produced in eukaryotic cells. The antigen-antibody complex is purified using protein-A or -G beads binding to immunoglobulins. The advantage of protein-based assays such as FIPA is to reduce the substrate complexity, eliminating non-target proteins that may provide unspecific binding seen on the TBI. FIPA may provide quantitative antibody titer results, as the fluorescence signal is proportional to the amount of antibodies binding to the antigen (
      • Kim Y.J.
      • Jung S.W.
      • Kim Y.
      • Park Y.J.
      • Han K.
      • Oh E.J.
      Detection of anti-aquaporin-4 antibodies in neuromyelitis optica: comparison of tissue-based and cell-based indirect immunofluorescence assays and Elisa.
      ;
      • Jarius S.
      • Wildemann B.
      Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature.
      ).
      • Waters P.J.
      • McKeon A.
      • Leite M.I.
      • Rajasekharan S.
      • Lennon V.A.
      • Villalobos A.
      • Palace J.
      • Mandrekar J.N.
      • Vincent A.
      • Bar-Or A.
      • Pittock S.J.
      Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays.
      compared ELISA, flow cytometry, CBA, tissue-based indirect immunofluorescence and FIPA assays. Results showed that FIPA and tissue-based indirect immunofluorescence had the lowest sensitivities for detecting AQP4-Ab (48%−53%). Due to the low sensitivity, FIPA is not usually recommended for use in clinical practice (
      • Waters P.J.
      • McKeon A.
      • Leite M.I.
      • Rajasekharan S.
      • Lennon V.A.
      • Villalobos A.
      • Palace J.
      • Mandrekar J.N.
      • Vincent A.
      • Bar-Or A.
      • Pittock S.J.
      Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays.
      ). This may be attributable to changes in the protein conformation after the protein processing or due to the protein tagging. For some antigens, the loss of specific membrane arrays may also interfere in the sensitivity. FIPA is also an time- and resource-consuming technique, requiring multiple step protocols (
      • Waters P.
      • Vincent A.
      Detection of anti-Aquaporin-4 antibodies in neuromyelitis optica: current status of the assays.
      ;
      • Jarius S.
      • Wildemann B.
      Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature.
      ). However, FIPA demonstrates high reproducibility and it may be useful for monitoring circulating antibody levels as a surrogate marker of antibody production and disease activity.

      2.2.4 Radioimmunoassay

      Radioimmunoassay (RIPA) expresses a recombinant protein in eukaryotic cells and it is labeled with the radioactive 35S-methionine portion, incubated with the patient sample and subsequently with Protein A (

      Patrono, C., Peskar, B.A., 1987. Radioimmunoassay in basic and clinical pharmacology.

      ). The radioactivity quantification of the antigen-antibody bound is done throughout a scintillation conter, and indicated the amount of autoantibodies present in the patient serum. For AQP4-Ab, RIPA has a relatively low sensitivity, but provides high specificity compared to CBA using flow cytometry (
      • Paul F.
      • Jarius S.
      • Aktas O.
      • Bluthner M.
      • Bauer O.
      • Appelhans H.
      • Franciotta D.
      • Bergamaschi R.
      • Littleton E.
      • Palace J.
      • Seelig H.P.
      • Hohlfeld R.
      • Vincent A.
      • Zipp F.
      Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica.
      ). The lower sensitivity may be partly explained by the protein production using a reticulocyte lysate-free cell-based in vitro transcription/translation system to express AQP4, which may have affected protein conformation (
      • Fazio R.
      • Malosio M.L.
      • Lampasona V.
      • De Feo D.
      • Privitera D.
      • Marnetto F.
      • Centonze D.
      • Ghezzi A.
      • Comi G.
      • Furlan R.
      • Martino G.
      Antiacquaporin 4 antibodies detection by different techniques in neuromyelitis optica patients.
      ). Despite the clinical use for the detection of AChR antibodies, the low sensitivity, cost and time required for execution limited the use in the clinical practice for CNS antigens.

      2.3 Cell-based assays

      CBA uses eukaryotic cell lines (such as HEK293 and CHO) transfected with plasmids encoding the human sequence of the protein of interest. Mock-transfected cells are usually used as controls. Transfected cells used in CBA express high levels of natively folded protein in the cell membrane, being useful for the validation of new protein targets for autoantibodies (
      • Ricken G.
      • Schwaiger C.
      • De Simoni D.
      • Pichler V.
      • Lang J.
      • Glatter S.
      • Macher S.
      • Rommer P.S.
      • Scholze P.
      • Kubista H.
      • Koneczny I.
      • Höftberger R.
      Detection methods for autoantibodies in suspected autoimmune encephalitis.
      ). Therefore, CBA usually have a higher sensitivity compared to TBI and protein-based assays (
      • Kang E.
      • Min J.
      • Lee K.H.
      • Kim B.J.
      Clinical usefulness of cell-based indirect immunofluorescence assay for the detection of aquaporin-4 antibodies in neuromyelitis optica spectrum disorder.
      ;
      • Höftberger R.
      • Sabater L.
      • Marignier R.
      • Aboul-Enein F.
      • Bernard-Valnet R.
      • Rauschka H.
      • Ruiz A.
      • Blanco Y.
      • Graus F.
      • Dalmau J.
      • Saiz A.
      An optimized immunohistochemistry technique improves NMO-IGG detection: study comparison with cell-based assays.
      ;
      • Jarius S.
      • Wildemann B.
      Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature.
      ;
      • Fryer J.P.
      • Lennon V.A.
      • Pittock S.J.
      • Jenkins S.M.
      • Fallier-Becker P.
      • Clardy S.L.
      • Horta E.
      • Jedynak E.A.
      • Lucchinetti C.F.
      • Shuster E.A.
      • Weinshenker B.G.
      • Wingerchuk D.M.
      • McKeon A.
      AQP4 autoantibody assay performance in clinical laboratory service.
      ) .
      The pattern of the antigen-antibody binding can be verified using indirect immunofluorescence or by multiparametric flow-cytometry, but some antigens may not be suitable for both methodologies. Indirect immunofluorescence requires attention on binding patterns and a highly trained reader. Antibodies titers are usually provided in semi-quantitative serial dilutions using indirect immunofluorescence. Flow-cytometry requires a multi-channel flow-cytometer equipment and experienced user on cell gating and analysis protocol. Antibodies titers using flow-cytometry are usually calculated in two main formats - mean fluorescence intensity (MFI) between transfected and non-transfected cells or a ratio between the patient's sample MFI and a negative sample MFI (
      • Chan K.H.
      • Kwan J.S.C.
      • Ho P.W.L.
      • Ho J.W.M.
      • Chu A.C.Y.
      • Ramsden D.B.
      Aquaporin-4 autoantibodies in neuromyelitis optica spectrum disorders: comparison between tissue-based and cell-based indirect immunofluorescence assays.
      ;
      • Kang E.
      • Min J.
      • Lee K.H.
      • Kim B.J.
      Clinical usefulness of cell-based indirect immunofluorescence assay for the detection of aquaporin-4 antibodies in neuromyelitis optica spectrum disorder.
      ;
      • Amatoury M.
      • Merheb V.
      • Langer J.
      • Wang X.M.
      • Dale R.C.
      • Brilot F.
      High-throughput flow cytometry cell-based assay to detect antibodies to N-Methyl-D-aspartate receptor or dopamine-2 receptor in human serum.
      ;
      • Ramberger M.
      • Peschl P.
      • Schanda K.
      • Irschick R.
      • Höftberger R.
      • Deisenhammer F.
      • Rostásy K.
      • Berger T.
      • Dalmau J.
      • Reindl M.
      Comparison of diagnostic accuracy of microscopy and flow cytometry in evaluating N-methyl-D-aspartate receptor antibodies in serum using a live cell-based assay.
      ;
      • Gastaldi M.
      • Nosadini M.
      • Spatola M.
      • Sartori S.
      • Franciotta D.
      N-methyl-D-aspartate receptor encephalitis: laboratory diagnostics and comparative clinical features in adults and children.
      ;
      • Ricken G.
      • Schwaiger C.
      • De Simoni D.
      • Pichler V.
      • Lang J.
      • Glatter S.
      • Macher S.
      • Rommer P.S.
      • Scholze P.
      • Kubista H.
      • Koneczny I.
      • Höftberger R.
      Detection methods for autoantibodies in suspected autoimmune encephalitis.
      ).
      Pre-fixed cells containing transfected cells may be produced on a commercial scale and stored for a relatively long period of time on low temperatures (
      • Kang E.
      • Min J.
      • Lee K.H.
      • Kim B.J.
      Clinical usefulness of cell-based indirect immunofluorescence assay for the detection of aquaporin-4 antibodies in neuromyelitis optica spectrum disorder.
      ), thus, it can be performed in routine clinical laboratories using indirect immunofluorescence protocols. However, there may have some loss of sensitivity and specificity compared to the live CBA performed in research laboratories (
      • Fryer J.P.
      • Lennon V.A.
      • Pittock S.J.
      • Jenkins S.M.
      • Fallier-Becker P.
      • Clardy S.L.
      • Horta E.
      • Jedynak E.A.
      • Lucchinetti C.F.
      • Shuster E.A.
      • Weinshenker B.G.
      • Wingerchuk D.M.
      • McKeon A.
      AQP4 autoantibody assay performance in clinical laboratory service.
      ;
      • Waters P.
      • Reindl M.
      • Saiz A.
      • Schanda K.
      • Tuller F.
      • Kral V.
      • Nytrova P.
      • Sobek O.
      • Nielsen H.H.
      • Barington T.
      • Lillevang S.T.
      • Illes Z.
      • Rentzsch K.
      • Berthele A.
      • Berki T.
      • Granieri L.
      • Bertolotto A.
      • Giometto B.
      • Zuliani L.
      • Hamann D.
      • Van Pelt E.D.
      • Hintzen R.
      • Höftberger R.
      • Costa C.
      • Comabella M.
      • Montalban X.
      • Tintoré M.
      • Siva A.
      • Altintas A.
      • Deniz G.
      • Woodhall M.
      • Palace J.
      • Paul F.
      • Hartung H.P.
      • Aktas O.
      • Jarius S.
      • Wildemann B.
      • Vedeler C.
      • Ruiz A.
      • Leite M.I.
      • Trillenberg P.
      • Probst M.
      • Saschenbrecker S.
      • Vincent A.
      • Marignier R.
      Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica.
      ). Commercially available kits are usually expensive, and their performance may depend on the experience with the interpretation of indirect immunofluorescence assays (
      • Waters P.
      • Reindl M.
      • Saiz A.
      • Schanda K.
      • Tuller F.
      • Kral V.
      • Nytrova P.
      • Sobek O.
      • Nielsen H.H.
      • Barington T.
      • Lillevang S.T.
      • Illes Z.
      • Rentzsch K.
      • Berthele A.
      • Berki T.
      • Granieri L.
      • Bertolotto A.
      • Giometto B.
      • Zuliani L.
      • Hamann D.
      • Van Pelt E.D.
      • Hintzen R.
      • Höftberger R.
      • Costa C.
      • Comabella M.
      • Montalban X.
      • Tintoré M.
      • Siva A.
      • Altintas A.
      • Deniz G.
      • Woodhall M.
      • Palace J.
      • Paul F.
      • Hartung H.P.
      • Aktas O.
      • Jarius S.
      • Wildemann B.
      • Vedeler C.
      • Ruiz A.
      • Leite M.I.
      • Trillenberg P.
      • Probst M.
      • Saschenbrecker S.
      • Vincent A.
      • Marignier R.
      Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica.
      ). Nevertheless, they do not require specialized environment for the transfection and maintenance of eukaryotic cell culture lines for live-CBA inaccessible for most research laboratories, especially in poor-resource or developing countries (
      • Jarius S.
      • Wildemann B.
      AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance.
      ).

      3. Clinical applications of CBA in CNS inflammatory disorders

      The main current clinical applications of CBA in CNS inflammatory disorders are summarized in the Table 1.
      Table 1Clinical application of autoantibodies in patients using CBA.
      DiseaseAntigenDiagnostic applicationPrognostic application
      NMOSDAQP4YesHigh-risk of relapsing disease; Antibody titers might be used in selected individual cases for disease monitoring
      MONEMMOGYesSeroconvertion to negative status during the follow-up may indicate a lower risk of relapsing disease
      Autoimmune encephalitis
      This list refers only to cell-surface autoantigens with detected autoantibodies.
      NMDA receptor LGI1 Caspr2 AM A receptor GABAb receptor GABAa receptor DPPX Dopamine-2 receptor IgLON5 P-Q-type VGCC mGLUR1 mGLUR5 Glycine receptorYesUnknown
      NMOSD: Neuromyelitis optica spectrum disorders, MONEM: MOG-associated optic neuritis, encephalitis and myelitis, AQP4: Aquaporin-4, MOG: Myelin oligodendrocyte glycoprotein, NMDA: N-methyl-D-aspartate, LGI1: Leucine-rich glioma inactivated 1, CASPR2: Contactin-associated protein-like 2, AMPA: α-amino-3‑hydroxy-5-methyl-4-isoxazolepropionic acid, GABA: Gamma-aminobutyric acid, DPPX: Dipeptidyl-peptidase-like protein-6, VGCC: voltage-gated calcium channel, mGLUR: Metabotropic glutamate receptor.
      low asterisk This list refers only to cell-surface autoantigens with detected autoantibodies.

      3.1 NMOSD

      After the discovery of AQP4-Ab in 2004 in NMOSD patients using TBI assay (
      • Lennon P.V.A.
      • Wingerchuk D.M.
      • Kryzer T.J.
      • Pittock S.J.
      • Lucchinetti C.F.
      • Fujihara K.
      • Nakashima I.
      • Weinshenker B.G.
      A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.
      ), an increasing number of AQP4-Ab positive patients were described having limited forms such as longitudinally extensive myelitis (LETM) or recurrent and/or bilateral ON, area postrema attacks with persistent (>48 h) hiccups, nausea and vomiting and those patients with associated diencephalic, brainstem and cerebral lesions or coexisting autoimmune systemic diseases. According to the international consensus diagnostic criteria for NMOSD published on 2015, the diagnosis of NMOSD for AQP4-Ab positive cases is possible if there is a suggestive attack with involvement 1 of 6 core locations (optic nerve, spinal cord, area postrema of the dorsal medulla, brainstem, diencephalon or cerebrum). In seronegative patients, two or more core locations must be affected, with at least one of the attacks in the optic nerve, spinal cord or the area postrema, and additional magnetic resonance imaging (MRI) criteria should be fulfilled (
      • Wingerchuk D.M.
      • Banwell B.
      • Bennett J.L.
      • Cabre P.
      • Carroll W.
      • Chitnis T.
      • De Seze J.
      • Fujihara K.
      • Greenberg B.
      • Jacob A.
      • Jarius S.
      • Lana-Peixoto M.
      • Levy M.
      • Simon J.H.
      • Tenembaum S.
      • Traboulsee A.L.
      • Waters P.
      • Wellik K.E.
      • Weinshenker B.G.
      International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.
      ).
      The 2015 NMOSD diagnostic criteria recommends that AQP4-Ab should be tested with CBA.
      • Waters P.J.
      • McKeon A.
      • Leite M.I.
      • Rajasekharan S.
      • Lennon V.A.
      • Villalobos A.
      • Palace J.
      • Mandrekar J.N.
      • Vincent A.
      • Bar-Or A.
      • Pittock S.J.
      Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays.
      performed a multicenter study that compared the AQP4-Ab assays, concluding that the most sensitive and specific assays were those using CBA protocols (73–77%) (
      • Waters P.J.
      • McKeon A.
      • Leite M.I.
      • Rajasekharan S.
      • Lennon V.A.
      • Villalobos A.
      • Palace J.
      • Mandrekar J.N.
      • Vincent A.
      • Bar-Or A.
      • Pittock S.J.
      Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays.
      ). In general, CBA using AQP4 M23-isoform results in slightly higher sensitivity compared to assays using AQP4 M1-isoform due to the formation of AQP4 orthogonal array of particles. In addition, CBA using live transfected cells usually have lower background and higher sensitivity compared to pre-fixed cells.

      3.2 MOG-associated disease

      MOG-associated disease has recently emerged as a new subgroup of inflammatory CNS demyelinating disorder distinct from MS. Although antibodies to MOG were firstly described in patients with clinical isolated syndromes converting to definitive MS using a WB assay with recombinant MOG peptide (
      • Reindl M.
      • Di Pauli F.
      • Rostásy K.
      • Berger T.
      The spectrum of MOG autoantibody-associated demyelinating diseases.
      ), this finding was not confirmed in other studies indicating limited clinical utility of this methodology (
      • Kuhle J.
      • Pohl C.
      • Mehling M.
      • Edan G.
      • Freedman M.S.
      • Hartung H.-.P.
      • Polman C.H.
      • Miller D.H.
      • Montalban X.
      • Barkhof F.
      • Bauer L.
      • Dahms S.
      • Lindberg R.
      • Kappos L.
      • Sandbrink R.
      Lack of association between antimyelin antibodies and progression to multiple sclerosis.
      ). Further several studies demonstrated antibody negativity in different cohorts of adult MS patients (
      • Tanaka M.
      • Tanaka K.
      Anti-MOG antibodies in adult patients with demyelinating disorders of the central nervous system.
      ;
      • Waters P.
      • Woodhall M.
      • O'Connor K.C.
      • Reindl M.
      • Lang B.
      • Sato D.K.
      • Jurynczyk M.
      • Tackley G.
      • Rocha J.
      • Takahashi T.
      • Misu T.
      • Nakashima I.
      • Palace J.
      • Fujihara K.
      • Isabel Leite M.
      • Vincent A.
      MOG cell-based assay detects non-MS patients with inflammatory neurologic disease.
      ;
      • Jurynczyk M.
      • Messina S.
      • Woodhall M.R.
      • Raza N.
      • Everett R.
      • Roca-Fernandez A.
      • Tackley G.
      • Hamid S.
      • Sheard A.
      • Reynolds G.
      • Chandratre S.
      • Hemingway C.
      • Jacob A.
      • Vincent A.
      • Leite M.I.
      • Waters P.
      • Palace J.
      Clinical presentation and prognosis in MOG-antibody disease: a UK study.
      ;
      • Wynford-Thomas R.
      • Jacob A.
      • Tomassini V.
      Neurological update: MOG antibody disease.
      ).
      The clinical spectrum of antibodies to myelin oligodendrocyte glycoprotein (MOG-Ab) positive patients clarified when conformational sensitive antibodies against MOG were evaluated using CBA. The first studies reported the association of MOG-Ab with ADEM in pediatric patients (
      • O'Connor K.C.
      • McLaughlin K.A.
      • De Jager P.L.
      • Chitnis T.
      • Bettelli E.
      • Xu C.
      • Robinson W.H.
      • Cherry S.V.
      • Bar-Or A.
      • Banwell B.
      • Fukaura H.
      • Fukazawa T.
      • Tenembaum S.
      • Wong S.J.
      • Tavakoli N.P.
      • Idrissova Z.
      • Viglietta V.
      • Rostasy K.
      • Pohl D.
      • Dale R.C.
      • Freedman M.
      • Steinman L.
      • Buckle G.J.
      • Kuchroo V.K.
      • Hafler D.A.
      • Wucherpfennig K.W.
      Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein.
      ;
      • Brilot F.
      • Dale R.C.
      • Selter R.C.
      • Grummel V.
      • Kalluri S.R.
      • Aslam M.
      • Phil M.
      • Busch V.
      • Zhou D.
      • Cepok S.
      • Hemmer B.
      Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease.
      ;

      Mclaughlin, K.A., Chitnis, T., Ϧ, J.N., Franz, B., Mcardel, S., Kuhle, J., Kappos, L., Rostasy, K., Gagne, D., Ness, J.M., Ϧϧ, S.T., Connor, K.C.O., Viglietta, V., Wong, S.J., Tavakoli, N.P., Seze, J.De, Samia, J., Bar-or, A., Hafler, D.A., Banwell, B., Kai, W., 2009. Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis183, 4067–4076.

      ). Moreover, patients with persistent MOG-Ab have a higher rate of relapsing disease among those that remained seropositive after an ADEM-like episode (
      • Pröbstel A.K.
      • Dornmair K.
      • Bittner R.
      • Sperl P.
      • Jenne D.
      • Magalhaes S.
      • Villalobos A.
      • Breithaupt C.
      • Weissert R.
      • Jacob U.
      • Krumbholz M.
      • Kuempfel T.
      • Blaschek A.
      • Stark W.
      • Gärtner J.
      • Pohl D.
      • Rostasy K.
      • Weber F.
      • Forne I.
      • Khademi M.
      • Olsson T.
      • Brilot F.
      • Tantsis E.
      • Dale R.C.
      • Wekerle H.
      • Hohlfeld R.
      • Banwell B.
      • Bar-Or A.
      • Meinl E.
      • Derfuss T.
      Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis.
      ).
      Further studies related MOG-Ab seropositivity in NMOSD patients who were negative to AQP4-Ab (
      • Reindl M.
      • Di Pauli F.
      • Rostásy K.
      • Berger T.
      The spectrum of MOG autoantibody-associated demyelinating diseases.
      ;
      • Sato D.K.
      • Callegaro D.
      • Lana-Peixoto M.A.
      • Waters P.J.
      • De Haidar Jorge F.M.
      • Takahashi T.
      • Nakashima I.
      • Apostolos- Pereira S.L.
      • Simm N.T.R.F.
      • Lino A.M.M.
      • Misu T.
      • Leite M.I.
      • Aoki M.
      • Fujihara K.
      Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders.
      ).
      • Sato D.K.
      • Callegaro D.
      • Lana-Peixoto M.A.
      • Waters P.J.
      • De Haidar Jorge F.M.
      • Takahashi T.
      • Nakashima I.
      • Apostolos- Pereira S.L.
      • Simm N.T.R.F.
      • Lino A.M.M.
      • Misu T.
      • Leite M.I.
      • Aoki M.
      • Fujihara K.
      Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders.
      described the clinical features of NMOSD MOG-Ab positive in comparison to AQP4-Ab positive patients (
      • Sato D.K.
      • Callegaro D.
      • Lana-Peixoto M.A.
      • Waters P.J.
      • De Haidar Jorge F.M.
      • Takahashi T.
      • Nakashima I.
      • Apostolos- Pereira S.L.
      • Simm N.T.R.F.
      • Lino A.M.M.
      • Misu T.
      • Leite M.I.
      • Aoki M.
      • Fujihara K.
      Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders.
      ). NMOSD MOG-Ab patients have no gender predominance, with high frequency of ON and with better functional recovery after an attack compared to AQP4-Ab positive patients. When myelitis was present it commonly involved lower spinal segments compared to AQP4-Ab patients. Other studies correlated MOG-Ab to recurrent and/or bilateral isolated ON (
      • Ramanathan S.
      • Reddel S.W.
      • Henderson A.
      • Parratt J.D.E.
      • Barnett M.
      • Gatt P.N.
      • Merheb V.
      • Kumaran R.Y.A.
      • Pathmanandavel K.
      • Sinmaz N.
      • Ghadiri M.
      • Yiannikas C.
      • Vucic S.
      • Stewart G.
      • Bleasel A.F.
      • Booth D.
      • Fung V.S.C.
      • Dale R.C.
      • Brilot F.
      Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis.
      ;
      • Chalmoukou K.
      • Alexopoulos H.
      • Akrivou S.
      • Stathopoulos P.
      • Reindl M.
      • Dalakas M.C.
      Anti-MOG antibodies are frequently associated with steroid-sensitive recurrent optic neuritis.
      ;
      • Nakajima H.
      • Motomura M.
      • Tanaka K.
      • Fujikawa A.
      • Nakata R.
      • Maeda Y.
      • Shima T.
      • Mukaino A.
      • Yoshimura S.
      • Miyazaki T.
      • Shiraishi H.
      • Kawakami A.
      • Tsujino A.
      Antibodies to myelin oligodendrocyte glycoprotein in idiopathic optic neuritis.
      ), isolated LETM (
      • Cobo-Calvo Á.
      • Sepúlveda M.
      • Bernard-Valnet R.
      • Ruiz A.
      • Brassat D.
      • Martínez-Yélamos S.
      • Saiz A.
      • Marignier R.
      Antibodies to myelin oligodendrocyte glycoprotein in aquaporin 4 antibody seronegative longitudinally extensive transverse myelitis: clinical and prognostic implications.
      ), ON following an ADEM episode (
      • Baumann M.
      • Hennes E.-M.
      • Schanda K.
      • Karenfort M.
      • Kornek B.
      • Seidl R.
      • Diepold K.
      • Lauffer H.
      • Marquardt I.
      • Strautmanis J.
      • Syrbe S.
      • Vieker S.
      • Ho ftberger R.
      • Reindl M.
      • Rostasy K.
      Children with multiphasic disseminated encephalomyelitis and antibodies to the myelin oligodendrocyte glycoprotein (MOG): extending the spectrum of MOG antibody positive diseases.
      ) and encephalitis (
      • Ogawa R.
      • Nakashima I.
      • Takahashi T.
      • Kaneko K.
      • Akaishi T.
      • Takai Y.
      • Sato D.K.
      • Nishiyama S.
      • Misu T.
      • Kuroda H.
      • Aoki M.
      • Fujihara K.
      MOG antibody-positive, benign, unilateral, cerebral cortical encephalitis with epilepsy. Persistent MOG-IGG positivity is a predictor of recurrence in MOG-IgG-associated optic neuritis, encephalitis and myelitis.
      ). Taken together, the identification of MOG-IgG using CBA allowed the clinical characterization of the patients encompassed under the term MONEM (MOG-IgG-associated ON, encephalitis - including ADEM-like lesions and cortical encephalitis, and myelitis) (
      • dos Passos G.R.
      • Oliveira L.M.
      • da Costa B.K.
      • Apostolos-Pereira S.L.
      • Callegaro D.
      • Fujihara K.
      • Sato D.K.
      MOG-IgG-associated optic neuritis, encephalitis, and myelitis: lessons learned from neuromyelitis optica spectrum disorder.
      ). As the clinical spectrum of MOG-associated disease expands, the clinical phenotypes associated with MOG-Ab are not limited to ADEM and aquaporin-4-IgG-negative NMOSD (
      • dos Passos G.R.
      • Oliveira L.M.
      • da Costa B.K.
      • Apostolos-Pereira S.L.
      • Callegaro D.
      • Fujihara K.
      • Sato D.K.
      MOG-IgG-associated optic neuritis, encephalitis, and myelitis: lessons learned from neuromyelitis optica spectrum disorder.
      ).
      Even though significant advances have been accomplished to guarantee high specificity of detection of MOG-Ab using CBA, there is still some issues that need to be improved.
      • Waters P.
      • Woodhall M.
      • O'Connor K.C.
      • Reindl M.
      • Lang B.
      • Sato D.K.
      • Jurynczyk M.
      • Tackley G.
      • Rocha J.
      • Takahashi T.
      • Misu T.
      • Nakashima I.
      • Palace J.
      • Fujihara K.
      • Isabel Leite M.
      • Vincent A.
      MOG cell-based assay detects non-MS patients with inflammatory neurologic disease.
      evaluated the specificity of the secondary autoantibodies used in CBA assays and they found that use of anti-human IgG1 secondary antibodies was more specific than IgG that recognizes heavy and light chains. This was partially explained by cross-reactivity of IgG light chains secondary antibody with IgM. The use of secondary IgG1 anti-human antibody increased the assay accuracy and differentiated MOG-Ab positive from MS patients (sensitivity 24%, 95% confidence interval [CI] 9%–45%; specificity 100%, 95% CI 88%–100%) (
      • Waters P.
      • Woodhall M.
      • O'Connor K.C.
      • Reindl M.
      • Lang B.
      • Sato D.K.
      • Jurynczyk M.
      • Tackley G.
      • Rocha J.
      • Takahashi T.
      • Misu T.
      • Nakashima I.
      • Palace J.
      • Fujihara K.
      • Isabel Leite M.
      • Vincent A.
      MOG cell-based assay detects non-MS patients with inflammatory neurologic disease.
      ). Therefore, it is recommended to select secondary antibodies against human IgG without cross-reactivity to other immunoglobulin subclasses.
      Although these findings still need to be confirmed by larger studies, apparently MONEM represents a new phenotype of CNS demyelinating disorder with MOG-Ab detected by CBA. For persistent MOG-Ab seropositive patients, MOG-Ab titers might be a prognostic tool that could be used to guide therapeutic decision-making. The follow-up of the titers of this autoantibody may help to identify the cases that remain seropositive and potentially might have a higher recurrence rate and could benefit from long-term immunosuppression (
      • Oliveira L.M.
      • Apostolos-Pereira S.L.
      • Pitombeira M.S.
      • Bruel Torretta P.H.
      • Callegaro D.
      • Sato D.K.
      Persistent MOG-IgG positivity is a predictor of recurrence in MOG-IgG-associated optic neuritis, encephalitis and myelitis.
      ).

      3.3 Autoimmune encephalitis

      Autoimmune encephalitis is a group of recently described diseases with autoantibodies directed to cell-surface neuronal antigens that are pathogenic by altering the function of neuronal receptors (
      • Dalmau J.
      • Geis C.
      • Graus F.
      Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system.
      ). Following the antibodies against N-methyl-D-aspartate positive cases, this emerging group of diseases has been characterized from the observation of groups of patients with similar phenotypes and patterns of IHC staining that allowed the identification of the specific antigens by mass-spectroscopy (
      • Dalmau J.
      • Geis C.
      • Graus F.
      Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system.
      ). Then, these antigens were validated in CBA with transfected cells.
      The antibodies directed to these cell-surface antigens can only be detected if they are in their native conformation preserving protein folding (
      • Graus F.
      • Titulaer M.J.
      • Balu R.
      • Benseler S.
      • Bien C.G.
      • Cellucci T.
      • Cortese I.
      • Dale R.C.
      • Gelfand J.M.
      • Geschwind M.
      • Glaser C.A.
      • Honnorat J.
      • Höftberger R.
      • Iizuka T.
      • Irani S.R.
      • Lancaster E.
      • Leypoldt F.
      • Prüss H.
      • Rae-Grant A.
      • Reindl M.
      • Rosenfeld M.R.
      • Rostásy K.
      • Saiz A.
      • Venkatesan A.
      • Vincent A.
      • Wandinger K.P.
      • Waters P.
      • Dalmau J.
      A clinical approach to diagnosis of autoimmune encephalitis.
      ). This is accomplished by CBA, IHC of fresh animal brain sections or immunocytochemistry of live neurons (
      • Lai M.
      • Hughes E.G.
      • Peng X.
      • Zhou L.
      • Gleichman A.J.
      • Shu H.
      • Matà S.
      • Kremens D.
      • Vitaliani R.
      • Geschwind M.D.
      • Bataller L.
      • Kalb R.G.
      • Davis R.
      • Graus F.
      • Lynch D.R.
      • Balice-Gordon R.
      • Dalmau J.
      AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location.
      ). CBA has been used in commercial kits of prefixed transfected cells in several centers. Even though this method has been proven to be specific, it may lack sensitivity to some antibodies (
      • McCracken L.
      • Zhang J.
      • Greene M.
      • Crivaro A.
      • Gonzalez J.
      • Kamoun M.
      • Lancaster E.
      Improving the antibody-based evaluation of autoimmune encephalitis.
      ). Since, most patients with autoimmune encephalitis have antibodies relevant to their clinical phenotype in cerebrospinal fluid (CSF), testing both serum and cerebrospinal fluid is recommended. If the antibodies were detected only in serum or if the clinical phenotype is not compatible with the identified antibody using CBA, the results should be confirmed by brain IHC or culture of neurons. (
      • Graus F.
      • Titulaer M.J.
      • Balu R.
      • Benseler S.
      • Bien C.G.
      • Cellucci T.
      • Cortese I.
      • Dale R.C.
      • Gelfand J.M.
      • Geschwind M.
      • Glaser C.A.
      • Honnorat J.
      • Höftberger R.
      • Iizuka T.
      • Irani S.R.
      • Lancaster E.
      • Leypoldt F.
      • Prüss H.
      • Rae-Grant A.
      • Reindl M.
      • Rosenfeld M.R.
      • Rostásy K.
      • Saiz A.
      • Venkatesan A.
      • Vincent A.
      • Wandinger K.P.
      • Waters P.
      • Dalmau J.
      A clinical approach to diagnosis of autoimmune encephalitis.
      ).
      Overall, the detection of autoantibody in autoimmune encephalitis using CBA allows the definition of the diagnosis, helps to make differential diagnosis in atypical cases (
      • Graus F.
      • Titulaer M.J.
      • Balu R.
      • Benseler S.
      • Bien C.G.
      • Cellucci T.
      • Cortese I.
      • Dale R.C.
      • Gelfand J.M.
      • Geschwind M.
      • Glaser C.A.
      • Honnorat J.
      • Höftberger R.
      • Iizuka T.
      • Irani S.R.
      • Lancaster E.
      • Leypoldt F.
      • Prüss H.
      • Rae-Grant A.
      • Reindl M.
      • Rosenfeld M.R.
      • Rostásy K.
      • Saiz A.
      • Venkatesan A.
      • Vincent A.
      • Wandinger K.P.
      • Waters P.
      • Dalmau J.
      A clinical approach to diagnosis of autoimmune encephalitis.
      ) and in research, and helps to define the spectrum of phenotypes associated with each autoantibody. Nevertheless, its prognosis value is still under investigation.
      CBA has several advantages in the evaluation of autoimmune encephalitis. It is more available than other methods that preserve the native conformation of the antigens making possible to test a higher number of suspected cases. Moreover, some auto-Ab, such as glycine receptor antibody, are better detected using specific CBA than IHC (
      • McCracken L.
      • Zhang J.
      • Greene M.
      • Crivaro A.
      • Gonzalez J.
      • Kamoun M.
      • Lancaster E.
      Improving the antibody-based evaluation of autoimmune encephalitis.
      ). However, it is important to evaluate the results of the CBA (as any other diagnostic method) according to the clinical hypothesis to define its interpretation and the necessity of further analysis.

      4. Conclusions

      Autoantibodies have revolutionized the diagnosis of inflammatory CNS disorders. NMOSD diagnostic criteria have incorporated the presence of AQP4-Ab as a major criterion, and MOG-associated disease have been described as a new potential disease entity. Moreover, an increased number of surface neuronal antigens have been described in autoimmune encephalitis. All these autoantibodies have high diagnostic application in the clinical practice with the development of CBA detecting conformational sensitive antibodies. Nevertheless, the prognostic value of most of them is still unclear and requires further research.

      CRediT authorship contribution statement

      Rachel Dias Molina: Writing - original draft, Writing - review & editing. Lucas Piccoli Conzatti: Writing - original draft, Writing - review & editing. Ana Paula Bornes da Silva: Writing - original draft, Writing - review & editing. Leise Daniele Sckenal Goi: Writing - original draft, Writing - review & editing. Bruna Klein da Costa: Writing - original draft, Writing - review & editing. Denise Cantarelli Machado: Writing - original draft, Writing - review & editing. Douglas Kazutoshi Sato: Writing - original draft, Writing - review & editing.

      Declaration of Competing Interest

      The authors declare that this research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. RDM has received a scholarship from CAPES/Brazil. LPC has nothing to disclosure. APBS has received a scholarship from CNPq/Brazil. LDSG has received a scholarship from CAPES/Brazil. BKC has received a scholarship from CNPq/Brazil and speaker honoraria from Libbs. DCM has nothing to disclosure. DKS has received a scholarship from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan; a Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (KAKENHI 15K19472); research support from CNPq/Brazil (425331/2016-4), FAPERGS/MS/CNPq/SESRS (17/2551-0001391-3) PPSUS/Brazil, TEVA (research grant for EMOCEMP Investigator Initiated Study), and Euroimmun AG (Neuroimmunological Complications associated with Arboviruses); and speaker honoraria from Biogen, Novartis, Genzyme, TEVA, Merck-Serono, Roche, and Bayer and has participated in advisory boards for Shire, Roche, TEVA, Merck-Serono and Quest/Athena Diagnostics.

      Funding

      This research was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Finance Code 001 - Brazilian Federal Agency for Support and Evaluation of Graduate Education (PROEX Program), FAPERGS/MS/CNPq/SESRS (17/2551-0001391-3) PPSUS/Brazil and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant 425331/2016-4.

      Acknowledgments

      The authors would like to acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Finance Code 001 - Brazilian Federal Agency for Support and Evaluation of Graduate Education (PROEX Program) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) com n° 425331/2016-4.

      References

        • Amatoury M.
        • Merheb V.
        • Langer J.
        • Wang X.M.
        • Dale R.C.
        • Brilot F.
        High-throughput flow cytometry cell-based assay to detect antibodies to N-Methyl-D-aspartate receptor or dopamine-2 receptor in human serum.
        J. Vis. Exp. 2013; : 1-7
      1. Bass, J., Wilkinson, D., Rankin, D., Phillips, B., Szewczyk, N., Smith, K., Atherton, P., 2017. An overview of technical considerations for western blotting applications to physiological research27, 69–81.

        • Baumann M.
        • Hennes E.-M.
        • Schanda K.
        • Karenfort M.
        • Kornek B.
        • Seidl R.
        • Diepold K.
        • Lauffer H.
        • Marquardt I.
        • Strautmanis J.
        • Syrbe S.
        • Vieker S.
        • Ho ftberger R.
        • Reindl M.
        • Rostasy K.
        Children with multiphasic disseminated encephalomyelitis and antibodies to the myelin oligodendrocyte glycoprotein (MOG): extending the spectrum of MOG antibody positive diseases.
        Mult. Scler. J. 2016; 22: 1821-1829
        • Brilot F.
        • Dale R.C.
        • Selter R.C.
        • Grummel V.
        • Kalluri S.R.
        • Aslam M.
        • Phil M.
        • Busch V.
        • Zhou D.
        • Cepok S.
        • Hemmer B.
        Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease.
        Ann. Neurol. 2009; 66: 833-842
        • Chalmoukou K.
        • Alexopoulos H.
        • Akrivou S.
        • Stathopoulos P.
        • Reindl M.
        • Dalakas M.C.
        Anti-MOG antibodies are frequently associated with steroid-sensitive recurrent optic neuritis.
        Neurol. Neuroimmunol. NeuroInflammation. 2015; 2: e131
        • Chan K.H.
        • Kwan J.S.C.
        • Ho P.W.L.
        • Ho J.W.M.
        • Chu A.C.Y.
        • Ramsden D.B.
        Aquaporin-4 autoantibodies in neuromyelitis optica spectrum disorders: comparison between tissue-based and cell-based indirect immunofluorescence assays.
        J. Neuroinflammation. 2010; 7: 1-9
        • Cobo-Calvo Á.
        • Sepúlveda M.
        • Bernard-Valnet R.
        • Ruiz A.
        • Brassat D.
        • Martínez-Yélamos S.
        • Saiz A.
        • Marignier R.
        Antibodies to myelin oligodendrocyte glycoprotein in aquaporin 4 antibody seronegative longitudinally extensive transverse myelitis: clinical and prognostic implications.
        Mult. Scler. J. 2016; 22: 312-319
        • Dalmau J.
        • Geis C.
        • Graus F.
        Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system.
        Physiol. Rev. 2017; 97: 839-887
        • Dalmau J.
        • Gleichman A.J.
        • Hughes E.G.
        • Rossi J.E.
        • Peng X.
        • Dessain S.K.
        • Rosenfeld M.R.
        • Balice-gordon R.
        • Lynch D.R.
        Anti-NMDA-receptor encephalitic: case series and analysis of the effects of antibodies.
        Lancet Neurol. 2008; 7: 1091-1098
        • Dalmau J.
        • Graus F.
        Antibody-mediated encephalitis.
        N. Engl. J. Med. 2018; 378: 840-851
        • Dalmau J.
        • Tüzün E.
        • Wu H.Y.
        • Masjuan J.
        • Rossi J.E.
        • Voloschin A.
        • Baehring J.M.
        • Shimazaki H.
        • Koide R.
        • King D.
        • Mason W.
        • Sansing L.H.
        • Dichter M.A.
        • Rosenfeld M.R.
        • Lynch D.R.
        Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma.
        Ann. Neurol. 2007; 61: 25-36
        • Di Pauli F.
        • Berger T.
        Myelin oligodendrocyte glycoprotein antibody-associated disorders: toward a new spectrum of inflammatory demyelinating CNS disorders?.
        Front. Immunol. 2018; 9: 2753
        • Di Pauli F.
        • Mader S.
        • Rostasy K.
        • Schanda K.
        • Bajer-Kornek B.
        • Ehling R.
        • Deisenhammer F.
        • Reindl M.
        • Berger T.
        Temporal dynamics of anti-MOG antibodies in CNS demyelinating diseases.
        Clin. Immunol. 2011; 138: 247-254
        • dos Passos G.R.
        • Oliveira L.M.
        • da Costa B.K.
        • Apostolos-Pereira S.L.
        • Callegaro D.
        • Fujihara K.
        • Sato D.K.
        MOG-IgG-associated optic neuritis, encephalitis, and myelitis: lessons learned from neuromyelitis optica spectrum disorder.
        Front. Neurol. 2018; 9: 1-10
        • Engvall E.
        • Perlmann P.
        Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes.
        J. Immunol. 1972; 109: 129-135
        • Fazio R.
        • Malosio M.L.
        • Lampasona V.
        • De Feo D.
        • Privitera D.
        • Marnetto F.
        • Centonze D.
        • Ghezzi A.
        • Comi G.
        • Furlan R.
        • Martino G.
        Antiacquaporin 4 antibodies detection by different techniques in neuromyelitis optica patients.
        Mult. Scler. 2009; 15: 1153-1163
        • Fryer J.P.
        • Lennon V.A.
        • Pittock S.J.
        • Jenkins S.M.
        • Fallier-Becker P.
        • Clardy S.L.
        • Horta E.
        • Jedynak E.A.
        • Lucchinetti C.F.
        • Shuster E.A.
        • Weinshenker B.G.
        • Wingerchuk D.M.
        • McKeon A.
        AQP4 autoantibody assay performance in clinical laboratory service.
        Neurol. Neuroimmunol. NeuroInflammation. 2014; 1 (e11)
        • Gastaldi M.
        • Nosadini M.
        • Spatola M.
        • Sartori S.
        • Franciotta D.
        N-methyl-D-aspartate receptor encephalitis: laboratory diagnostics and comparative clinical features in adults and children.
        Expert Rev. Mol. Diagn. 2018; 18: 181-193
        • Graus F.
        • Titulaer M.J.
        • Balu R.
        • Benseler S.
        • Bien C.G.
        • Cellucci T.
        • Cortese I.
        • Dale R.C.
        • Gelfand J.M.
        • Geschwind M.
        • Glaser C.A.
        • Honnorat J.
        • Höftberger R.
        • Iizuka T.
        • Irani S.R.
        • Lancaster E.
        • Leypoldt F.
        • Prüss H.
        • Rae-Grant A.
        • Reindl M.
        • Rosenfeld M.R.
        • Rostásy K.
        • Saiz A.
        • Venkatesan A.
        • Vincent A.
        • Wandinger K.P.
        • Waters P.
        • Dalmau J.
        A clinical approach to diagnosis of autoimmune encephalitis.
        Lancet Neurol. 2016; 15: 391-404
        • Höftberger R.
        • Sabater L.
        • Marignier R.
        • Aboul-Enein F.
        • Bernard-Valnet R.
        • Rauschka H.
        • Ruiz A.
        • Blanco Y.
        • Graus F.
        • Dalmau J.
        • Saiz A.
        An optimized immunohistochemistry technique improves NMO-IGG detection: study comparison with cell-based assays.
        PLoS ONE. 2013; 8: 6-11
        • Hu W.
        • Lucchinetti C.F.
        The pathological spectrum of CNS inflammatory demyelinating diseases.
        Semin. Immunopathol. 2009; 31: 439-453
        • Jarius S.
        • Franciotta D.
        • Paul F.
        • Bergamaschi R.
        • Rommer P.S.
        • Ruprecht K.
        • Ringelstein M.
        • Aktas O.
        • Kristoferitsch W.
        • Wildemann B.
        Testing for antibodies to human aquaporin-4 by ELISA: sensitivity, specificity, and direct comparison with immunohistochemistry.
        J. Neurol. Sci. 2012; 320: 32-37
        • Jarius S.
        • Wildemann B.
        Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature.
        Brain Pathol. 2013; 23: 661-683
        • Jarius S.
        • Wildemann B.
        AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance.
        Nat. Rev. Neurol. 2010; 6: 383-392
        • Jensen E.C.
        The basics of western blotting.
        Anat. Rec. 2012; 295: 369-371
        • Jurynczyk M.
        • Messina S.
        • Woodhall M.R.
        • Raza N.
        • Everett R.
        • Roca-Fernandez A.
        • Tackley G.
        • Hamid S.
        • Sheard A.
        • Reynolds G.
        • Chandratre S.
        • Hemingway C.
        • Jacob A.
        • Vincent A.
        • Leite M.I.
        • Waters P.
        • Palace J.
        Clinical presentation and prognosis in MOG-antibody disease: a UK study.
        Brain. 2017; 140: 3128-3138
        • Kang E.
        • Min J.
        • Lee K.H.
        • Kim B.J.
        Clinical usefulness of cell-based indirect immunofluorescence assay for the detection of aquaporin-4 antibodies in neuromyelitis optica spectrum disorder.
        Ann. Lab. Med. 2012; 32: 331-338
        • Kim Y.J.
        • Jung S.W.
        • Kim Y.
        • Park Y.J.
        • Han K.
        • Oh E.J.
        Detection of anti-aquaporin-4 antibodies in neuromyelitis optica: comparison of tissue-based and cell-based indirect immunofluorescence assays and Elisa.
        J. Clin. Lab. Anal. 2012; 26: 184-189
        • Kuhle J.
        • Pohl C.
        • Mehling M.
        • Edan G.
        • Freedman M.S.
        • Hartung H.-.P.
        • Polman C.H.
        • Miller D.H.
        • Montalban X.
        • Barkhof F.
        • Bauer L.
        • Dahms S.
        • Lindberg R.
        • Kappos L.
        • Sandbrink R.
        Lack of association between antimyelin antibodies and progression to multiple sclerosis.
        N. Engl. J. Med. 2007; 356: 371-378
        • Lai M.
        • Hughes E.G.
        • Peng X.
        • Zhou L.
        • Gleichman A.J.
        • Shu H.
        • Matà S.
        • Kremens D.
        • Vitaliani R.
        • Geschwind M.D.
        • Bataller L.
        • Kalb R.G.
        • Davis R.
        • Graus F.
        • Lynch D.R.
        • Balice-Gordon R.
        • Dalmau J.
        AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location.
        Ann. Neurol. 2009; 65: 424-434
        • Lennon P.V.A.
        • Wingerchuk D.M.
        • Kryzer T.J.
        • Pittock S.J.
        • Lucchinetti C.F.
        • Fujihara K.
        • Nakashima I.
        • Weinshenker B.G.
        A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.
        Lancet. 2004; 364: 2106-2112
        • Lennon V.A.
        • Kryzer T.J.
        • Pittock S.J.
        • Verkman A.S.
        • Hinson S.R.
        IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel.
        J. Exp. Med. 2005; 202: 473-477
        • Manole E.
        • Popescu I.D.
        • Constantin C.
        • Mihai S.
        • Gaina G.F.
        • Codrici E.
        • Bastian A.E.
        • Neagu M.T.
        Immunoassay techniques highlighting biomarkers in immunogenetic diseases.
        IntechOpen. 2018;
        • McCracken L.
        • Zhang J.
        • Greene M.
        • Crivaro A.
        • Gonzalez J.
        • Kamoun M.
        • Lancaster E.
        Improving the antibody-based evaluation of autoimmune encephalitis.
        Neurol. Neuroimmunol. NeuroInflammation. 2017; 4: 1-7
      2. Mclaughlin, K.A., Chitnis, T., Ϧ, J.N., Franz, B., Mcardel, S., Kuhle, J., Kappos, L., Rostasy, K., Gagne, D., Ness, J.M., Ϧϧ, S.T., Connor, K.C.O., Viglietta, V., Wong, S.J., Tavakoli, N.P., Seze, J.De, Samia, J., Bar-or, A., Hafler, D.A., Banwell, B., Kai, W., 2009. Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis183, 4067–4076.

        • Nakajima H.
        • Motomura M.
        • Tanaka K.
        • Fujikawa A.
        • Nakata R.
        • Maeda Y.
        • Shima T.
        • Mukaino A.
        • Yoshimura S.
        • Miyazaki T.
        • Shiraishi H.
        • Kawakami A.
        • Tsujino A.
        Antibodies to myelin oligodendrocyte glycoprotein in idiopathic optic neuritis.
        BMJ Open. 2015; 5 (e007766)
        • O'Connor K.C.
        • McLaughlin K.A.
        • De Jager P.L.
        • Chitnis T.
        • Bettelli E.
        • Xu C.
        • Robinson W.H.
        • Cherry S.V.
        • Bar-Or A.
        • Banwell B.
        • Fukaura H.
        • Fukazawa T.
        • Tenembaum S.
        • Wong S.J.
        • Tavakoli N.P.
        • Idrissova Z.
        • Viglietta V.
        • Rostasy K.
        • Pohl D.
        • Dale R.C.
        • Freedman M.
        • Steinman L.
        • Buckle G.J.
        • Kuchroo V.K.
        • Hafler D.A.
        • Wucherpfennig K.W.
        Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein.
        Nat. Med. 2007; 13: 211-217
        • Ogawa R.
        • Nakashima I.
        • Takahashi T.
        • Kaneko K.
        • Akaishi T.
        • Takai Y.
        • Sato D.K.
        • Nishiyama S.
        • Misu T.
        • Kuroda H.
        • Aoki M.
        • Fujihara K.
        MOG antibody-positive, benign, unilateral, cerebral cortical encephalitis with epilepsy. Persistent MOG-IGG positivity is a predictor of recurrence in MOG-IgG-associated optic neuritis, encephalitis and myelitis.
        Mult. Scler. J. 2017; : 1-8
        • Oliveira L.M.
        • Apostolos-Pereira S.L.
        • Pitombeira M.S.
        • Bruel Torretta P.H.
        • Callegaro D.
        • Sato D.K.
        Persistent MOG-IgG positivity is a predictor of recurrence in MOG-IgG-associated optic neuritis, encephalitis and myelitis.
        Mult. Scler. 2018; ([Epub ahead of print])1352458518811597https://doi.org/10.1177/1352458518811597
      3. Patrono, C., Peskar, B.A., 1987. Radioimmunoassay in basic and clinical pharmacology.

        • Paul F.
        • Jarius S.
        • Aktas O.
        • Bluthner M.
        • Bauer O.
        • Appelhans H.
        • Franciotta D.
        • Bergamaschi R.
        • Littleton E.
        • Palace J.
        • Seelig H.P.
        • Hohlfeld R.
        • Vincent A.
        • Zipp F.
        Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica.
        PLoS Med. 2007; 4: 669-674
        • Pittock S.J.
        • Lennon V.A.
        • Bakshi N.
        • Shen L.
        • McKeon A.
        • Quach H.
        • Briggs F.B.S.
        • Bernstein A.L.
        • Schaefer C.A.
        • Barcellos L.F.
        Seroprevalence of aquaporin-4-IgG in a northern California population representative cohort of multiple sclerosis.
        JAMA Neurol. 2014; 71: 1433-1436
        • Possee R.D.
        Baculoviruses as expression vectors.
        Curr. Opin. Biotechnol. 1997; 8: 569-572
        • Pröbstel A.K.
        • Dornmair K.
        • Bittner R.
        • Sperl P.
        • Jenne D.
        • Magalhaes S.
        • Villalobos A.
        • Breithaupt C.
        • Weissert R.
        • Jacob U.
        • Krumbholz M.
        • Kuempfel T.
        • Blaschek A.
        • Stark W.
        • Gärtner J.
        • Pohl D.
        • Rostasy K.
        • Weber F.
        • Forne I.
        • Khademi M.
        • Olsson T.
        • Brilot F.
        • Tantsis E.
        • Dale R.C.
        • Wekerle H.
        • Hohlfeld R.
        • Banwell B.
        • Bar-Or A.
        • Meinl E.
        • Derfuss T.
        Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis.
        Neurology. 2011; 77: 580-588
        • Ramanathan S.
        • Reddel S.W.
        • Henderson A.
        • Parratt J.D.E.
        • Barnett M.
        • Gatt P.N.
        • Merheb V.
        • Kumaran R.Y.A.
        • Pathmanandavel K.
        • Sinmaz N.
        • Ghadiri M.
        • Yiannikas C.
        • Vucic S.
        • Stewart G.
        • Bleasel A.F.
        • Booth D.
        • Fung V.S.C.
        • Dale R.C.
        • Brilot F.
        Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis.
        Neurol. Neuroimmunol. NeuroInflammation. 2014; 1: 1-12
        • Ramberger M.
        • Peschl P.
        • Schanda K.
        • Irschick R.
        • Höftberger R.
        • Deisenhammer F.
        • Rostásy K.
        • Berger T.
        • Dalmau J.
        • Reindl M.
        Comparison of diagnostic accuracy of microscopy and flow cytometry in evaluating N-methyl-D-aspartate receptor antibodies in serum using a live cell-based assay.
        PLoS ONE. 2015; 10: 1-18
        • Reindl M.
        • Di Pauli F.
        • Rostásy K.
        • Berger T.
        The spectrum of MOG autoantibody-associated demyelinating diseases.
        Nat. Rev. Neurol. 2013; 9: 455-461
        • Ricken G.
        • Schwaiger C.
        • De Simoni D.
        • Pichler V.
        • Lang J.
        • Glatter S.
        • Macher S.
        • Rommer P.S.
        • Scholze P.
        • Kubista H.
        • Koneczny I.
        • Höftberger R.
        Detection methods for autoantibodies in suspected autoimmune encephalitis.
        Front. Neurol. 2018; 9: 841
        • Sato D.K.
        • Callegaro D.
        • Lana-Peixoto M.A.
        • Waters P.J.
        • De Haidar Jorge F.M.
        • Takahashi T.
        • Nakashima I.
        • Apostolos- Pereira S.L.
        • Simm N.T.R.F.
        • Lino A.M.M.
        • Misu T.
        • Leite M.I.
        • Aoki M.
        • Fujihara K.
        Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders.
        Neurology. 2014; 82: 474-481
        • Takahashi T.
        • Fujihara K.
        • Nakashima I.
        • Misu T.
        • Miyazawa I.
        • Nakamura M.
        • Watanabe S.
        • Ishii N.
        • Itoyama Y.
        Establishment of a new sensitive assay for anti-human aquaporin-4 antibody in neuromyelitis optica.
        Tohoku J. Exp. Med. 2006; 210: 307-313
        • Takahashi T.
        • Fujihara K.
        • Nakashima I.
        • Misu T.
        • Miyazawa I.
        • Nakamura M.
        • Watanabe S.
        • Shiga Y.
        • Kanaoka C.
        • Fujimori J.
        • Sato S.
        • Itoyama Y.
        Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre.
        Brain. 2007; 130: 1235-1243
        • Tanaka M.
        • Tanaka K.
        Anti-MOG antibodies in adult patients with demyelinating disorders of the central nervous system.
        J. Neuroimmunol. 2014; 270: 98-99
        • Towbin H.
        • Staehelin T.
        • Gordon J.
        Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.
        Proc. Natl. Acad. Sci. U. S. A. 1979; 76: 4350-4354
        • Waters P.
        • Jarius S.
        • Littleton E.
        • Leite M.I.
        • Jacob S.
        • Gray B.
        • Geraldes R.
        • Vale T.
        • Jacob A.
        • Palace J.
        • Maxwell S.
        • Beeson D.
        • Vincent A.
        Aquaporin-4 antibodies in neuromyelitis optica and longitudinally extensive transverse myelitis.
        Arch. Neurol. 2008; 65: 913-919
        • Waters P.
        • Reindl M.
        • Saiz A.
        • Schanda K.
        • Tuller F.
        • Kral V.
        • Nytrova P.
        • Sobek O.
        • Nielsen H.H.
        • Barington T.
        • Lillevang S.T.
        • Illes Z.
        • Rentzsch K.
        • Berthele A.
        • Berki T.
        • Granieri L.
        • Bertolotto A.
        • Giometto B.
        • Zuliani L.
        • Hamann D.
        • Van Pelt E.D.
        • Hintzen R.
        • Höftberger R.
        • Costa C.
        • Comabella M.
        • Montalban X.
        • Tintoré M.
        • Siva A.
        • Altintas A.
        • Deniz G.
        • Woodhall M.
        • Palace J.
        • Paul F.
        • Hartung H.P.
        • Aktas O.
        • Jarius S.
        • Wildemann B.
        • Vedeler C.
        • Ruiz A.
        • Leite M.I.
        • Trillenberg P.
        • Probst M.
        • Saschenbrecker S.
        • Vincent A.
        • Marignier R.
        Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica.
        J. Neurol. Neurosurg. Psychiatry. 2016; 87: 1005-1015
        • Waters P.
        • Vincent A.
        Detection of anti-Aquaporin-4 antibodies in neuromyelitis optica: current status of the assays.
        Int. MS J. 2008; 15
        • Waters P.
        • Woodhall M.
        • O'Connor K.C.
        • Reindl M.
        • Lang B.
        • Sato D.K.
        • Jurynczyk M.
        • Tackley G.
        • Rocha J.
        • Takahashi T.
        • Misu T.
        • Nakashima I.
        • Palace J.
        • Fujihara K.
        • Isabel Leite M.
        • Vincent A.
        MOG cell-based assay detects non-MS patients with inflammatory neurologic disease.
        Neurol. Neuroimmunol. NeuroInflammation. 2015; 2 (e89)
        • Waters P.J.
        • McKeon A.
        • Leite M.I.
        • Rajasekharan S.
        • Lennon V.A.
        • Villalobos A.
        • Palace J.
        • Mandrekar J.N.
        • Vincent A.
        • Bar-Or A.
        • Pittock S.J.
        Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays.
        Neurology. 2012; 78: 665-671
        • Wingerchuk D.M.
        • Banwell B.
        • Bennett J.L.
        • Cabre P.
        • Carroll W.
        • Chitnis T.
        • De Seze J.
        • Fujihara K.
        • Greenberg B.
        • Jacob A.
        • Jarius S.
        • Lana-Peixoto M.
        • Levy M.
        • Simon J.H.
        • Tenembaum S.
        • Traboulsee A.L.
        • Waters P.
        • Wellik K.E.
        • Weinshenker B.G.
        International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.
        Neurology. 2015; 85: 177-189
        • Wolburg H.
        • Wolburg-Buchholz K.
        • Fallier-Becker P.
        • Noell S.
        • Mack A.F.
        Structure and functions of aquaporin-4-based orthogonal arrays of particles, in: international review of cell and molecular biology. institute of pathology, university of tubingen.
        Tubingen, Germany. 2011; : 1-41
        • Wynford-Thomas R.
        • Jacob A.
        • Tomassini V.
        Neurological update: MOG antibody disease.
        J. Neurol. 2019; 266: 1280-1286