Advertisement
Clinical trial| Volume 38, 101525, February 2020

Technology-enabled comprehensive characterization of multiple sclerosis in clinical practice

Published:November 13, 2019DOI:https://doi.org/10.1016/j.msard.2019.101525

      Highlights

      • Technology enables objective and standardized patient assessments in clinic.
      • Patient-reported outcome measures and MRI correlated with neuroperformance scores.
      • The strongest clinical and MRI predictors of neuroperformance test results varied.
      • These tests have possible additive value in assessing multiple sclerosis disability.

      Abstract

      Background

      Objective and longitudinal measurements of disability in patients with multiple sclerosis (MS) are desired in order to monitor disease status and response to disease-modifying and symptomatic therapies. Technology-enabled comprehensive assessment of MS patients, including neuroperformance tests (NPTs), patient-reported outcome measures (PROMs), and MRI, is incorporated into clinical care at our center. The relationships of each NPT with PROMs and MRI measures in a real-world setting are incompletely studied, particularly in larger datasets.

      Objectives

      To demonstrate the utility of comprehensive neurological assessment and determine the association between NPTs, PROMs, and quantitative MRI measures in a large MS clinical cohort.

      Methods

      NPTs (processing speed [PST], contrast sensitivity [CST], manual dexterity [MDT], and walking speed [WST]) and physical disability-related PROMs (Quality of Life in Neurological Disorders [Neuro-QoL], Patient Determined Disease Steps [PDDS], and Patient-Reported Outcomes Measurement Information System Global-10 [PROMIS-10] physical) were collected as part of routine clinical care. Fully-automated MRI analysis calculated T2-lesion volume (T2LV), whole brain fraction (WBF), thalamic volume (TV), and cervical spinal cord cross-sectional area (CA) for brain MRIs completed within 3 months of a clinic visit during which NPTs and PROMs were assessed. Spearman's rank correlation coefficients evaluated the cross-sectional associations of NPTs with PROMs and MRI measures. Linear regression was utilized to determine which combination of clinical characteristics, patient demographics, MRI measures, and PROMs best cross-sectionally explained each NPT result.

      Results

      997 unique patients (age 47.7 ± 11.4 years, 71.8% female) who underwent assessments over a 2-year period were included. Correlations among NPTs and PROMs were moderate. PST correlations were strongest for Neuro-QoL upper extremity (NQ-UE) (Spearman's rho = 0.43) and lower extremity (NQ-LE) (0.47). CST correlations were strongest for NQ-UE (0.33), NQ-LE (0.36), and PDDS (-0.31). MDT correlations were strongest for NQ-UE (-0.53), NQ-LE (-0.54), and PDDS (0.53). WST correlations were strongest for PDDS (0.64) and NQ-LE (-0.65). NPTs also had moderate correlations with MRI metrics, the strongest of which were observed with PST (with T2LV (-0.44) and WBF (0.49)). Spearman's rho for other NPT-MRI correlations ranged from 0.23 to 0.36. Linear regression identified age, disease duration, PROMIS-10 physical, NQ-UE, NQ-LE, T2LV and WBF as significant cross-sectional explanatory variables for PST (adjusted R2=0.46). For CST, significant variables included age and NQ-LE (adjusted R2 = 0.30). For MDT, significant variables included PDDS, PROMIS-10 physical, NQ-UE, NQ-LE, T2LV, and WBF (adjusted R2=0.37). For WST, significant variables included sex, PDDS, NQ-LE, T2LV, and CA (adjusted R2=0.39).

      Conclusions

      Impaired performance on NPTs correlated with worse physical disability-related PROMs and MRI disease severity, but the strongest cross-sectional explanatory variables for each NPT component varied. This study supports the use of comprehensive, objective quantification of MS status in clinical and research settings. Future longitudinal analyses can determine predictors of treatment response and disability worsening.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Balcer L.J.
        • Baier M.L.
        • Cohen J.A.
        • Kooijmans M.F.
        • Sandrock A.W.
        • Nano-Schiavi M.L.
        • Pfohl D.C.
        • Mills M.
        • Bowen J.
        • Ford C.
        • Heidenreich F.R.
        • Jacobs D.A.
        • Markowitz C.E.
        • Stuart W.H.
        • Ying G.S.
        • Galetta S.L.
        • Maguire M.G.
        • Cutter G.R.
        Contrast letter acuity as a visual component for the multiple sclerosis functional composite.
        Neurology. 2003; 61: 1367-1373
        • Balcer L.J.
        • Raynowska J.
        • Nolan R.
        • Galetta S.L.
        • Kapoor R.
        • Benedict R.
        • Phillips G.
        • LaRocca N.
        • Hudson L.
        • Rudick R.
        Validity of low-contrast letter acuity as a visual performance outcome measure for multiple sclerosis.
        Mult. Scler. 2017; 23: 734-747
        • Bergsland N.
        • Zivadinov R.
        • Dwyer M.G.
        • Weinstock-Guttman B.
        • Benedict R.H.
        Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients.
        Mult. Scler. 2016; 22: 1327-1336
        • Bisecco A.
        • Stamenova S.
        • Caiazzo G.
        • d’Ambrosio A.
        • Sacco R.
        • Docimo R.
        • Esposito S.
        • Cirillo M.
        • Esposito F.
        • Bonavita S.
        • Tedeschi G.
        • Gallo A.
        Attention and processing speed performance in multiple sclerosis is mostly related to thalamic volume.
        Brain Imaging Behav. 2018; 12: 20-28
        • Chahin S.
        • Balcer L.J.
        • Miller D.M.
        • Zhang A.
        • Galetta S.L.
        Vision in a phase 3 trial of natalizumab for multiple sclerosis: relation to disability and quality of life.
        J. Neuroophthalmol. 2015; 35: 6-11
        • Daams M.
        • Steenwijk M.D.
        • Wattjes M.P.
        • Geurts J.J.
        • Uitdehaag B.M.
        • Tewarie P.K.
        • Balk L.J.
        • Pouwels P.J.
        • Killestein J.
        • Barkhof F.
        Unraveling the neuroimaging predictors for motor dysfunction in long-standing multiple sclerosis.
        Neurology. 2015; 85: 248-255
        • De Angelis F.S.J.
        • Eshaghi A.
        • Garcia A.
        • Prados F.
        • Plantone D.
        • Doshi A.
        • John N.
        • Calvi A.
        • MacManus D.
        • Ourselin S.
        • Pavitt S.
        • Giovannoni G.
        • Parker R.
        • Weir C.
        • Stallard N.
        • Hawkins C.
        • Sharrack B.
        • Connick P.
        • Chandran S.
        • Gandini Wheeler-Kingshott C.
        • Barkhof F.
        • Chataway J.
        Spinal Cord Area is a Stronger Predictor of Physical Disability than Brain Volume in Secondary Progressive Multiple Sclerosis (O113).
        European Academy of Neurology Annual Meeting, Lisbon, Portugal2018
        • de Carvalho M.
        • Marques F.
        Jackknife euclidean likelihood-based inference for spearman’s rho.
        North Am. Actuarial J. 2012; 16: 487-492
        • Debernard L.
        • Melzer T.R.
        • Alla S.
        • Eagle J.
        • Van Stockum S.
        • Graham C.
        • Osborne J.R.
        • Dalrymple-Alford J.C.
        • Miller D.H.
        • Mason D.F.
        Deep grey matter MRI abnormalities and cognitive function in relapsing-remitting multiple sclerosis.
        Psychiatry Res. 2015; 234: 352-361
        • Fischer J.S.
        • Rudick R.A.
        • Cutter G.R.
        • Reingold S.C.
        The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force.
        Mult. Scler. 1999; 5: 244-250
        • Fisher E.
        • Rudick R.A.
        • Cutter G.
        • Baier M.
        • Miller D.
        • Weinstock-Guttman B.
        • Mass M.K.
        • Dougherty D.S.
        • Simonian N.A.
        Relationship between brain atrophy and disability: an 8-year follow-up study of multiple sclerosis patients.
        Mult. Scler. 2000; 6: 373-377
        • Frohman E.M.
        • Dwyer M.G.
        • Frohman T.
        • Cox J.L.
        • Salter A.
        • Greenberg B.M.
        • Hussein S.
        • Conger A.
        • Calabresi P.
        • Balcer L.J.
        • Zivadinov R.
        Relationship of optic nerve and brain conventional and non-conventional MRI measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx: a pilot study.
        J. Neurol. Sci. 2009; 282: 96-105
        • Gershon R.C.
        • Lai J.S.
        • Bode R.
        • Choi S.
        • Moy C.
        • Bleck T.
        • Miller D.
        • Peterman A.
        • Cella D.
        Neuro-QOL: quality of life item banks for adults with neurological disorders: item development and calibrations based upon clinical and general population testing.
        Qual. Life Res. 2012; 21: 475-486
      1. HealthMeasures, 2018. PROMIS. http://www.healthmeasures.net/explore-measurement-systems/promis. (Accessed August 1 2018).

        • Jakimovski D.
        • Weinstock-Guttman B.
        • Hagemeier J.
        • Vaughn C.B.
        • Kavak K.S.
        • Gandhi S.
        • Bennett S.E.
        • Fuchs T.A.
        • Bergsland N.
        • Dwyer M.G.
        • Benedict R.H.B.
        • Zivadinov R.
        Walking disability measures in multiple sclerosis patients: correlations with MRI-derived global and microstructural damage.
        J. Neurol. Sci. 2018; 393: 128-134
        • Kroenke K.
        • Spitzer R.L.
        • Williams J.B.
        The PHQ-9: validity of a brief depression severity measure.
        J. Gen. Intern. Med. 2001; 16: 606-613
        • Learmonth Y.C.
        • Motl R.W.
        • Sandroff B.M.
        • Pula J.H.
        • Cadavid D.
        Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis.
        BMC Neurol. 2013; 13: 37
        • Maghzi A.H.
        • Revirajan N.
        • Julian L.J.
        • Spain R.
        • Mowry E.M.
        • Liu S.
        • Jin C.
        • Green A.J.
        • McCulloch C.E.
        • Pelletier D.
        • Waubant E.
        Magnetic resonance imaging correlates of clinical outcomes in early multiple sclerosis.
        Mult. Scler. Relat. Disord. 2014; 3: 720-727
        • Montalban X.
        • Gold R.
        • Thompson A.J.
        • Otero-Romero S.
        • Amato M.P.
        • Chandraratna D.
        • Clanet M.
        • Comi G.
        • Derfuss T.
        • Fazekas F.
        • Hartung H.P.
        • Havrdova E.
        • Hemmer B.
        • Kappos L.
        • Liblau R.
        • Lubetzki C.
        • Marcus E.
        • Miller D.H.
        • Olsson T.
        • Pilling S.
        • Selmaj K.
        • Siva A.
        • Sorensen P.S.
        • Sormani M.P.
        • Thalheim C.
        • Wiendl H.
        • Zipp F.
        ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis.
        Eur. J. Neurol. 2018; 25: 215-237
        • Motl R.W.
        • Zivadinov R.
        • Bergsland N.
        • Benedict R.H.
        Thalamus volume and ambulation in multiple sclerosis: a cross-sectional study.
        Neurodegener. Dis. Manag. 2016; 6: 23-29
        • Nourbakhsh B.
        • Azevedo C.
        • Maghzi A.H.
        • Spain R.
        • Pelletier D.
        • Waubant E.
        Subcortical grey matter volumes predict subsequent walking function in early multiple sclerosis.
        J. Neurol. Sci. 2016; 366: 229-233
        • Ontaneda D.
        • LaRocca N.
        • Coetzee T.
        • Rudick R.
        Revisiting the multiple sclerosis functional composite: proceedings from the national multiple sclerosis society (NMSS) task force on clinical disability measures.
        Mult. Scler. 2012; 18: 1074-1080
        • Rae-Grant A.
        • Bennett A.
        • Sanders A.E.
        • Phipps M.
        • Cheng E.
        • Bever C.
        Quality improvement in neurology: multiple sclerosis quality measures: executive summary.
        Neurology. 2015; 85: 1904-1908
        • Rao S.M.
        • Losinski G.
        • Mourany L.
        • Schindler D.
        • Mamone B.
        • Reece C.
        • Kemeny D.
        • Narayanan S.
        • Miller D.M.
        • Bethoux F.
        • Bermel R.A.
        • Rudick R.
        • Alberts J.
        Processing speed test: validation of a self-administered, iPad((R))-based tool for screening cognitive dysfunction in a clinic setting.
        Mult. Scler. 2017; 23: 1929-1937
        • Rao S.M.
        • Martin A.L.
        • Huelin R.
        • Wissinger E.
        • Khankhel Z.
        • Kim E.
        • Fahrbach K.
        Correlations between MRI and information processing speed in MS: a meta-analysis.
        Mult. Scler. Int. 2014; 2014975803
        • Rasche L.
        • Scheel M.
        • Otte K.
        • Althoff P.
        • van Vuuren A.B.
        • Giess R.M.
        • Kuchling J.
        • Bellmann-Strobl J.
        • Ruprecht K.
        • Paul F.
        • Brandt A.U.
        • Schmitz-Hubsch T.
        MRI markers and functional performance in patients with CIS and MS: a cross-sectional study.
        Front. Neurol. 2018; 9: 718
        • Rhodes J.K.
        • Schindler D.
        • Rao S.M.
        • Venegas F.
        • Bruzik E.T.
        • Gabel W.
        • Williams J.R.
        • Phillips G.A.
        • Mullen C.C.
        • Freiburger J.L.
        • Mourany L.
        • Reece C.
        • Miller D.M.
        • Bethoux F.
        • Bermel R.A.
        • Krupp L.B.
        • Mowry E.M.
        • Alberts J.
        • Rudick R.A.
        Multiple sclerosis performance test: technical development and usability.
        Adv. Ther. 2019; 36: 1741-1755
        • Rudick R.A.
        • Miller D.
        • Bethoux F.
        • Rao S.M.
        • Lee J.C.
        • Stough D.
        • Reece C.
        • Schindler D.
        • Mamone B.
        • Alberts J.
        The multiple sclerosis performance test (MSPT): an iPad-based disability assessment tool.
        J. Vis. Exp. 2014; : e51318
        • Wu G.F.
        • Schwartz E.D.
        • Lei T.
        • Souza A.
        • Mishra S.
        • Jacobs D.A.
        • Markowitz C.E.
        • Galetta S.L.
        • Nano-Schiavi M.L.
        • Desiderio L.M.
        • Cutter G.R.
        • Calabresi P.A.
        • Udupa J.K.
        • Balcer L.J.
        Relation of vision to global and regional brain MRI in multiple sclerosis.
        Neurology. 2007; 69: 2128-2135
        • Zivadinov R.
        • Bergsland N.
        • Cappellani R.
        • Hagemeier J.
        • Melia R.
        • Carl E.
        • Dwyer M.G.
        • Lincoff N.
        • Weinstock-Guttman B.
        • Ramanathan M.
        Retinal nerve fiber layer thickness and thalamus pathology in multiple sclerosis patients.
        Eur. J. Neurol. 2014; 21: 1137-e1161