Clinical trial| Volume 38, 101521, February 2020

The accuracy of standard multiple sclerosis MRI brain sequences for the diagnosis of optic neuropathy

Published:November 12, 2019DOI:


      • T2 sagittal MRI brain has high specificity (>97%) for optic neuropathy (ON).
      • T2 sagittal MRI with 3 mm slice thickness has higher sensitivity for ON than 4 mm.
      • The sensitivity for ON is 85% when using 3 mm slice thickness.
      • Sensitivity is poor in the intraorbital nerve segment, 69% at 3 mm slice thickness.



      Detection of optic neuropathy on MRI has potential implications for the diagnosis and management of Multiple Sclerosis (MS).


      This study assessed the accuracy of T2 sagittal MRI brain for detection of optic neuropathy, compared to coronal STIR orbit.

      Methods and materials

      Retrospective single-center blinded diagnostic accuracy study of 100 consecutive patients who underwent both T2 sagittal brain and coronal STIR orbit MRI. All were performed on 1.5T scanners. T2 sagittal slice thickness was 4 mm for the first 50 patients (group1) and 3 mm for the second 50 (group2). The MRIs were reviewed in a blinded fashion to determine the presence of optic neuropathy. Coronal STIR orbit sequences were considered the diagnostic reference standard.


      The sensitivity of T2 sagittal brain imaging for ON was 44% in group 1 and 85% in group 2 (p = 0.007). The specificities were 98% and 97% respectively (p = 0.9). Sensitivity was poorest for evaluation of the intraorbital nerve segment (56% grp1, 69% grp2, p = 0.4).


      T2 sagittal MRI brain has high specificity for the detection of optic neuropathy when compared to coronal STIR orbit. Sensitivity is increased when slice thickness is reduced, but remains poor for evaluation of the intraorbital segment.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Toosy A.T.
        • Mason D.F.
        • Miller D.H
        Optic neuritis.
        Lancet Neurol. 2014; 13: 83-99
        • Wilhelm H.
        • Schabet M.
        The diagnosis and treatment of optic neuritis.
        Dtsch. Arztebl. Int. 2015; 112 (quiz 26): 616-625
        • Kupersmith M.J.
        • Alban T.
        • Zeiffer B.
        • Lefton D
        Contrast-enhanced MRI in acute optic neuritis: relationship to visual performance.
        Brain. 2002; 125: 812-822
        • Soelberg K.
        • Skejoe H.P.B.
        • Grauslund J.
        • Smith T.J.
        • Lillevang S.T.
        • Jarius S.
        • et al.
        Magnetic resonance imaging findings at the first episode of acute optic neuritis.
        Mult. Scler. Relat. Disord. 2017; 20: 30-36
        • Miller D.H.
        • Newton M.R.
        • van der Poel J.C.
        • du Boulay E.P.
        • Halliday A.M.
        • Kendall B.E.
        • et al.
        Magnetic resonance imaging of the optic nerve in optic neuritis.
        Neurology. 1988; 38: 175-179
        • Petzold A.
        • Wattjes M.P.
        • Costello F.
        • Flores-Rivera J.
        • Fraser C.L.
        • Fujihara K.
        • et al.
        The investigation of acute optic neuritis: a review and proposed protocol.
        Nat. Rev. Neurol. 2014; 10: 447-458
        • Tartaro A.
        • Onofrj M.
        • Delli Pizzi C.
        • Bonomo L.
        • Thomas A.
        • Fulgente T.
        • et al.
        Long time echo STIR sequence magnetic resonance imaging of optic nerves in optic neuritis.
        Ital. J. Neurol. Sci. 1996; 17: 35-42
        • Rae-Grant A.
        • et al.
        Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.
        Neurology. 2018; 90: 777-788
        • Ramalho J.
        • Semelka R.C.
        • Ramalho M.
        • Nunes R.H.
        • AlObaidy M.
        • Castillo M
        Gadolinium-Based contrast agent accumulation and toxicity: an update.
        AJNR Am. J. Neuroradiol. 2016; 37: 1192-1198
        • Bossuyt P.M.
        • Reitsma J.B.
        • Bruns D.E.
        • Gatsonis C.A.
        • Glasziou P.P.
        • Irwig L.M.
        • et al.
        Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative.
        BMJ (Clinical Res. Ed). 2003; 326: 41-44
        • Onodera M.
        • Yama N.
        • Hashimoto M.
        • Shonai T.
        • Aratani K.
        • Takashima H.
        • et al.
        The signal intensity ratio of the optic nerve to ipsilateral frontal white matter is of value in the diagnosis of acute optic neuritis.
        Eur. Radiol. 2016; 26: 2640-2645
        • Thompson A.J.
        • Banwell B.L.
        • Barkhof F.
        • Carroll W.M.
        • Coetzee T.
        • Comi G.
        • et al.
        Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.
        Lancet Neurol. 2018; 17: 162-173
        • Filippi M.
        • Rocca M.
        • Ciccarelli O.
        • De Stefano N.
        • Evangelou N.
        • Kappos L.
        • et al.
        MRI criteria for the diagnosis of multiple sclerosis: magnims consensus guidelines.
        Lancet Neurol. 2016; 15: 292-303
        • Marques I.
        • Matias F.
        • Silva E.
        • Cunha L.
        • Sousa L
        Risk of multiple sclerosis after optic neuritis in patients with normal baseline brain MRI.
        J. Clin. Neurosci. 2014; 21: 583-586
        • Brownlee W.J.
        • Miszkiel K.A.
        • Tur C.
        • Barkhof F.
        • Miller D.H.
        • Ciccarelli O
        Inclusion of optic nerve involvement in dissemination in space criteria for multiple sclerosis.
        Neurology. 2018; 91: e1130-e11e4
        • Giorgio A.
        • De Stefano N
        Effective utilization of MRI in the diagnosis and management of multiple sclerosis.
        Neurol. Clin. 2018; 36: 27-34
        • Sartoretti T.
        • Sartoretti E.
        • Rauch S.
        • Binkert C.
        • Wyss M.
        • Czell D.
        • et al.
        How common is signal-intensity increase in optic nerve segments on 3D double inversion recovery sequences in visually asymptomatic patients with multiple sclerosis?.
        AJNR Am. J. Neuroradiol. 2017; 38: 1748-1753
        • Gala F.
        Magnetic resonance imaging of optic nerve.
        Indian J. Radiol. Imaging. 2015; 25: 421-438
        • Khanna S.
        • Sharma A.
        • Huecker J.
        • Gordon M.
        • Naismith R.T.
        • Van Stavern G.P
        Magnetic resonance imaging of optic neuritis in patients with neuromyelitis optica versus multiple sclerosis.
        J. Neuroophthalmol. 2012; 32: 216-220
        • Storoni M.
        • Davagnanam I.
        • Radon M.
        • Siddiqui A.
        • Plant G.T
        Distinguishing optic neuritis in neuromyelitis optica spectrum disease from multiple sclerosis: a novel magnetic resonance imaging scoring system.
        J. Neuroophthalmol. 2013; 33: 123-127
        • Gray O.M.
        • McDonnell G.V.
        • Hawkins S.A
        Factors in the Rising Prevalence of Multiple Sclerosis in the North-East of Ireland. 14. Multiple sclerosis, Basingstoke, England2008: 880-886
        • Wattjes M.P.
        • Rovira A.
        • Miller D.
        • Yousry T.A.
        • Sormani M.P.
        • de Stefano M.P.
        • et al.
        Evidence-based guidelines: magnims consensus guidelines on the use of MRI in multiple sclerosis–establishing disease prognosis and monitoring patients.
        Nat. Rev. Neurol. 2015; 11: 597-606