Advertisement
Clinical trial| Volume 38, 101505, February 2020

Cognitive performance and cognitive workload in multiple sclerosis: Two different constructs of cognitive functioning?

Published:November 05, 2019DOI:https://doi.org/10.1016/j.msard.2019.101505

      Highlights

      • Cognitive workload reflects the amount of energy expenditure to complete a cognitive task.
      • Cognitive workload can be assessed either through self-report or pupillary response.
      • Individuals with MS who exhibit cognitive impairments do not show increased cognitive workload.
      • Individuals with MS may not show adequate compensation mechanisms for their cognitive impairments.
      • Cognitive workload and cognitive performance may reflect two distinct constructs of cognitive functioning.

      Abstract

      Background

      Cognitive impairment in individuals with Multiple Sclerosis (iwMS) is traditionally diagnosed using performance measures on cognitive tests. Yet, performance on cognitive tests does not convey the amount of mental effort or cognitive workload it takes to complete the task. The main aim was to evaluate whether cognitive performance and cognitive workload are two different constructs of cognitive functioning in iwMS.

      Methods

      IwMS were categorized into cognitive impairments (iwMS+, n = 10) and no cognitive impairments (iwMS-, n = 12) using their performance on Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Their scores on BICAMS, Stroop, and trail making tests were compared to age- and education-matched controls (n = 22). Cognitive workload was assessed using the self-reported NASA Task Load Index and the Index of Cognitive Activity, derived from pupillary response.

      Results

      IwMS+ performed worse on most cognitive tests compared to iwMS- and controls. However, iwMS+ did not report or exhibit greater cognitive workload compared to the other groups. Potential confounding variables, such as sex, use of antidepressants, and symptoms of depression, fatigue, and dysautonomia did not influence the lack of correlation between cognitive performance and cognitive workload in all three groups.

      Conclusion

      Cognitive performance and cognitive workload seem to measure different cognitive constructs of cognitive functioning in MS. Our results suggest that iwMS+ do not show effective allocation of cognitive resources to compensate for deteriorated performance in cognitive tests.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Achiron A.
        • Chapman J.
        • Magalashvili D.
        • Dolev M.
        • Lavie M.
        • Bercovich E.
        • Polliack M.
        • Doniger G.M.
        • Stern Y.
        • Khilkevich O.
        • Menascu S.
        • Hararai G.
        • Gurevich M.
        • Barak Y.
        Modeling of cognitive impairment by disease duration in multiple sclerosis: a cross-sectional study.
        PLoS ONE. 2013; 8: e71058
        • Aldughmi M.
        • Huisinga J.
        • Lynch S.G.
        • Siengsukon C.F.
        The relationship between fatigability and sleep quality in people with multiple sclerosis.
        Mult. Scler. J. Exp. Transl. Clin. 2016; 19: 232-239
        • Amato M.P.
        • Ponziani G.
        • Siracusa G.
        • Sorbi S.
        Cognitive dysfunction in early-onset multiple sclerosis: a reappraisal after 10 years.
        Arch. Neurol. 2001; 58: 1602-1606
        • Beatty J.
        Task-evoked pupillary responses, processing load, and the structure of processing resources.
        Psychol. Bull. 1982; 91: 276-292
        • Benedict R.H.B.
        • Brandt J.
        Hopkins Verbal Learning Test Revised and Brief Visuospatial Memory Test Revised: Professional Manual Supplement. Psychological Assessment Resources, Inc, Odessa, Fl:Psychological Assessment Resources, Inc2007
        • Benedict R.H.
        • Amato M.P.
        • Boringa J.
        • Brochet B.
        • Foley F.
        • Fredrikson S.
        • Hamalainen P.
        • Hartung H.
        • Krupp L.
        • Penner I.
        • Reder A.T.
        • Langdon D.
        Brief international cognitive assessment for MS (BICAMS): international standards for validation.
        BMC Neurol. 2012; 12: 55
        • Brochet B.
        • Ruet A.
        Cognitive impairment in multiple sclerosis with regards to disease duration and clinical phenotypes.
        Front. Neurol. 2019; 10: 261
        • Chiaravalloti N.D.
        • DeLuca J.
        Cognitive impairment in multiple sclerosis.
        Lancet Neurol. 2008; 7: 1139-1151
        • de Rodez Benavent S.A.
        • Nygaard G.O.
        • Harbo H.F.
        • Tonnesen S.
        • Sowa P.
        • Landro N.I.
        • Wendel-Haga M.
        • Etholm L.
        • Nilsen K.B.
        • Drolsum L.
        • Kerty E.
        • Celius E.G.
        • Laeng B.
        Fatigue and cognition: pupillary responses to problem-solving in early multiple sclerosis patients.
        Brain Behav. 2017; 7: e00717
        • Denney D.R.
        • Hughes A.J.
        • Elliott J.K.
        • Roth A.K.
        • Lynch S.G.
        Incidental learning during rapid information processing on the symbol-digit modalities test.
        Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2015; 30: 322-328
        • Devos H.
        • Ranchet M.
        • Backus D.
        • Abisamra M.
        • Anschutz J.
        • Allison Jr., C.D.
        • Mathur S.
        • Akinwuntan A.E.
        Determinants of on-road driving in multiple sclerosis.
        Arch. Phys. Med. Rehabil. 2017; 98 (e1332): 1332-1338
        • Drake A.S.
        • Weinstock-Guttman B.
        • Morrow S.A.
        • Hojnacki D.
        • Munschauer F.E.
        • Benedict R.H.
        Psychometrics and normative data for the multiple sclerosis functional composite: replacing the PASAT with the symbol digit modalities test.
        Mult. Scler. 2010; 16 (Houndmills, Basingstoke, England): 228-237
        • Duchowski A.T.
        • Krejtz K.
        • Krejtz I.
        • Biele C.
        • Niedzielska A.
        • Kiefer P.
        • Raubal M.
        • Giannopoulos I.
        The index of pupillary activity: measuring cognitive load vis-à-visTask difficulty with pupil oscillation.
        in: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal QC, Canada ACM, 2018: 1-13
        • Elwood R.W.
        The california verbal learning test: psychometric characteristics and clinical application.
        Neuropsychol. Rev. 1995; 5: 173-201
        • Fenu G.
        • Fronza M.
        • Lorefice L.
        • Arru M.
        • Coghe G.
        • Frau J.
        • Marrosu M.G.
        • Cocco E.
        Performance in daily activities, cognitive impairment and perception in multiple sclerosis patients and their caregivers.
        BMC Neurol. 2018; 18 (212-212)
        • Flachenecker P.
        • Kumpfel T.
        • Kallmann B.
        • Gottschalk M.
        • Grauer O.
        • Rieckmann P.
        • Trenkwalder C.
        • Toyka K.V.
        Fatigue in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters.
        Mult. Scler. 2002; 8 (Houndmills, Basingstoke, England): 523-526
        • Gadea M.
        • Martinez-Bisbal M.C.
        • Marti-Bonmati L.
        • Espert R.
        • Casanova B.
        • Coret F.
        • Celda B.
        Spectroscopic axonal damage of the right locus coeruleus relates to selective attention impairment in early stage relapsing-remitting multiple sclerosis.
        Brain. 2004; 127: 89-98
        • Goretti B.
        • Niccolai C.
        • Hakiki B.
        • Sturchio A.
        • Falautano M.
        • Minacapelli E.
        • Martinelli V.
        • Incerti C.
        • Nocentini U.
        • Murgia M.
        • Fenu G.
        • Cocco E.
        • Marrosu M.G.
        • Garofalo E.
        • Ambra F.I.
        • Maddestra M.
        • Consalvo M.
        • Viterbo R.G.
        • Trojano M.
        • Losignore N.A.
        • Zimatore G.B.
        • Pietrolongo E.
        • Lugaresi A.
        • Langdon D.
        • Portaccio E.
        • Amato M.P.
        The brief international cognitive assessment for multiple sclerosis (BICAMS): normative values with gender, age and education corrections in the Italian population.
        BMC Neurol. 2014; 14: 171
        • Granholm E.L.
        • Panizzon M.S.
        • Elman J.A.
        • Jak A.J.
        • Hauger R.L.
        • Bondi M.W.
        • Lyons M.J.
        • Franz C.E.
        • Kremen W.S.
        Pupillary responses as a biomarker of early risk for Alzheimer's disease.
        J. Alzheimers Dis. 2017; 56: 1419-1428
        • Grzegorski T.
        • Losy J.
        Cognitive impairment in multiple sclerosis - a review of current knowledge and recent research.
        Rev. Neurosci. 2017; 28: 845-860
        • Hanken K.
        • Manousi A.
        • Klein J.
        • Kastrup A.
        • Eling P.
        • Hildebrandt H.
        On the relation between self-reported cognitive fatigue and the posterior hypothalamic-brainstem network.
        Eur. J. Neurol. Off. J. Eur. Fed. Neurol. Soc. 2016; 23: 101-109
        • Hart S.G.
        • Staveland L.E.
        Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research.
        in: Hancock P.A. Meshkati N. Advances in Psychology, North-Holland1988: 139-183
        • Johnson E.L.
        • Miller Singley A.T.
        • Peckham A.D.
        • Johnson S.L.
        • Bunge S.A.
        Task-evoked pupillometry provides a window into the development of short-term memory capacity.
        Front Psychol. 2014; 5: 218
        • Kahneman D.
        Attention and Effort.
        Prentice Hall, Englewood, NJ1973
        • Kavaliunas A.
        • Danylaite Karrenbauer V.
        • Gyllensten H.
        • Manouchehrinia A.
        • Glaser A.
        • Olsson T.
        • Alexanderson K.
        • Hillert J.
        Cognitive function is a major determinant of income among multiple sclerosis patients in Sweden acting independently from physical disability.
        Mult. Scler. J. 2019; 25: 104-112
        • Kurtzke J.F.
        Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
        Neurology. 1983; 33: 1444-1452
        • Langdon D.W.
        • Amato M.P.
        • Boringa J.
        • Brochet B.
        • Foley F.
        • Fredrikson S.
        • Hamalainen P.
        • Hartung H.P.
        • Krupp L.
        • Penner I.K.
        • Reder A.T.
        • Benedict R.H.
        Recommendations for a brief international cognitive assessment for multiple sclerosis (BICAMS).
        Mult. Scler. 2012; 18 (Houndmills, Basingstoke, England): 891-898
        • Liu K.Y.
        • Marijatta F.
        • Hämmerer D.
        • Acosta-Cabronero J.
        • Düzel E.
        • Howard R.J.
        Magnetic resonance imaging of the human locus coeruleus: a systematic review.
        Neurosci. Biobehav. Rev. 2017; 83: 325-355
        • Marshall S.P.
        Identifying cognitive state from eye metrics.
        Aviat. Space Environ. Med. 2007; 78: B165-B175
        • Mrazik M.
        • Millis S.
        • Drane D.L.
        The oral trail making test: effects of age and concurrent validity.
        Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2010; 25: 236-243
        • Nasreddine Z.S.
        • Phillips N.A.
        • Bedirian V.
        • Charbonneau S.
        • Whitehead V.
        • Collin I.
        • Cummings J.L.
        • Chertkow H.
        The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment.
        J. Am. Geriatr. Soc. 2005; 53: 695-699
        • Pais-Ribeiro J.L.
        • Martins da Silva A.
        • Vilhena E.
        • Moreira I.
        • Santos E.
        • Mendonca D.
        The hospital anxiety and depression scale, in patients with multiple sclerosis.
        Neuropsychiatr. Dis. Treat. 2018; 14: 3193-3197
        • Ranchet M.
        • Morgan J.C.
        • Akinwuntan A.E.
        • Devos H.
        Cognitive workload across the spectrum of cognitive impairments: a systematic review of physiological measures.
        Neurosci. Biobehav. Rev. 2017; 80: 516-537
        • Ranchet M.
        • Orlosky J.
        • Morgan J.C.
        • Akinwuntan A.E.
        • Devos H.
        Pupillary response to cognitive workload during saccadic tasks in Parkinson's disease.
        Behav. Brain Res. 2017; (Accepted)
        • Rao S.M.
        Cognitive function in patients with multiple sclerosis: impairment and treatment.
        Int. J. MS Care. 2004; 6: 9-22
        • Ritvo P.G.
        • Fischer J.S.
        • Miller D.M.
        • Andrews H.
        • Paty D.
        • LaRocca N.
        Multiple Sclerosis Quality of Life inventory: a User's Manual.
        National Multiple Sclerosis Society, New York1997: 1-65
        • Roar M.
        • Illes Z.
        • Sejbaek T.
        Practice effect in symbol digit modalities test in multiple sclerosis patients treated with natalizumab.
        Mult. Scler. Relat. Disord. 2016; 10: 116-122
        • Roberg B.L.
        • Bruce J.M.
        • Lovelace C.T.
        • Lynch S.
        How patients with multiple sclerosis perceive cognitive slowing.
        Clin. Neuropsychol. 2012; 26: 1278-1295
        • Sletten D.M.
        • Suarez G.A.
        • Low P.A.
        • Mandrekar J.
        • Singer W.
        COMPASS 31: a refined and abbreviated composite autonomic symptom score.
        Mayo Clin. Proc. 2012; 87: 1196-1201
        • Stroop J.R.
        Studies of interference in serial verbal reactions.
        J. Exp. Psychol. 1935; 18: 19
        • Sumowski J.F.
        • Benedict R.
        • Enzinger C.
        • Filippi M.
        • Geurts J.J.
        • Hamalainen P.
        • Hulst H.
        • Inglese M.
        • Leavitt V.M.
        • Rocca M.A.
        • Rosti-Otajarvi E.M.
        • Rao S.
        Cognition in multiple sclerosis: state of the field and priorities for the future.
        Neurology. 2018; 90: 278-288
        • Zipp F.
        • Oh J.
        • Fragoso Y.D.
        • Waubant E.
        Implementing the 2017 McDonald criteria for the diagnosis of multiple sclerosis.
        Nat. Rev. Neurol. 2019; 15: 441-445