Clinical trial| Volume 38, 101495, February 2020

Immunoglobulin G index as a biomarker of relapse response to corticosteroids during early stages of multiple sclerosis

Published:November 06, 2019DOI:


      • IgG index contributes to relapse response to steroids at early stages of MS.
      • A one-point increase in IgG index reduces the risk of relapse poor response by 50%.%
      • IgG index correlates with the residual change of EDSS following relapses.



      Despite the considerable advances in disease modifying therapy in multiple sclerosis (MS), management of acute MS relapses remains understudied. The response to relapse therapy is heterogenous among patients, and the exact reason behind such response remains elusive. Identification of a reliable biomarker for relapse responsiveness would contribute considerably to optimizing the relapse outcome.


      to explore whether the immunoglobulin G (IgG) index during acute relapse contributes to relapse response to corticosteroid therapy or not.


      A prospective study was conducted on 46 MS patients attending MS clinic in relapse with a baseline EDSS≤3 before the relapse. IgG index was measured in all patients before corticosteroids therapy, and their EDSS was re-assessed after 3 months.


      The mean age of the recruited patients was 26.89±4.19 years, with females constituting 71.7% of the sample. IgG index was significantly higher in patients who recovered fully after relapse (1.44) than those who were partially recovered (0.95)(P<0.001), and it was inversely correlated with EDSS increase after the relapse (r=-0.390, P = 0.007). On regression analysis, the OR of IgG index to relapse response was 0.05 (CI: 0.07–0.31, 95%)(P = 0.003).


      IgG index can be a promising biomarker of relapse response to steroids in early stages of MS.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bonnan M.
        Does disease-irrelevant intrathecal synthesis in multiple sclerosis make sense in the light of tertiary lymphoid organs?.
        Front. Neurol. 2014; (5 MAR)
        • Bonnan M.
        Intrathecal IGG synthesis: a resistant and valuable target for future multiple sclerosis treatments.
        Mult Scler Int. 2015; 2015: 1-15
        • Cerqueira J.J.
        • Compston D.A.S.
        • Geraldes R.
        • Rosa M.M.
        • Schmierer K.
        • Thompson A.
        • et al.
        Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis?.
        J. Neurol. Neurosurg. Psychiatry [Internet]. 2018; 89 (Aug 1 [cited 2019 Apr 9] Available from): 844-850
        • Chan A.
        • Gold R
        Can pathological patterns be used to guide individualized multiple sclerosis therapy?.
        Nat. Clin. Pract. Neurol. 2006; 2: 72-73
        • Correia I.
        • Ribeiro J.J.
        • Isidoro L.
        • Batista S.
        • Nunes C.
        • Macário C.
        • et al.
        Plasma exchange in severe acute relapses of multiple sclerosis – Results from a Portuguese cohort.
        Mult Scler Relat Disord. 2018; 19: 148-152
        • Cortese I.
        • Chaudhry V.
        • So Y.T.
        • Cantor F.
        • Cornblath D.R.
        • Rae-Grant A
        Evidence-based guideline update: plasmapheresis in neurologic disorders: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology.
        Neurology. 2011; 76: 294-300
        • Erdfelder E.
        • FAul F.
        • Buchner A.
        • Lang A.G
        Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
        Behav. Res. Methods. 2009; 41: 1149-1160
        • Freedman M.S.
        • Selchen D.
        • Arnold D.L.
        • Prat A.
        • Banwell B.
        • Yeung M.
        • et al.
        Treatment optimization in MS: canadian ms working group updated recommendations. vol. 40.
        Can. J. Neurol. Sci.. Le journal canadien des sciences neurologiques. 2013; : 307-323
        • Häusser-Kinzel S.
        • Weber M.S.
        The role of B cells and antibodies in multiple sclerosis, neuromyelitis optica, and related disorders [Internet]. vol. 10.
        Front. Immunol. Fronts. 2019; ([cited 2019 Jul 23] Available from): 201
        • Hirst C.L.
        • Ingram G.
        • Pickersgill T.P.
        • Robertson N.P
        Temporal evolution of remission following multiple sclerosis relapse and predictors of outcome.
        Mult. Scler. J. 2012; 18: 1152-1158
        • Inusah S.
        • Sormani M.P.
        • Cofield S.S.
        • Aban I.B.
        • Musani S.K.
        • Srinivasasainagendra V.
        • et al.
        Assessing changes in relapse rates in multiple sclerosis.
        Mult. Scler. 2010;
        • Jarius S.
        • König F.B.
        • Metz I.
        • Ruprecht K.
        • Paul F.
        • Brück W.
        • et al.
        Pattern II and pattern III MS are entities distinct from pattern I MS: evidence from cerebrospinal fluid analysis.
        J. Neuroinflammation [Internet]. 2017; 14 (Aug 29 [cited 2019 Apr 9] Available from): 171
        • Kalincik T
        Multiple sclerosis relapses: epidemiology, outcomes and management. a systematic review. vol. 44.
        Neuroepidemiology. 2015; : 199-214
        • Keegan M.
        • König F.
        • McClelland R.
        • Brück W.
        • Morales Y.
        • Bitsch A.
        • et al.
        Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange.
        Lancet. 2005; 366: 579-582
        • Kirkpatrick LA F.B.
        A Simple Guide to IBM SPSS Statistics For Version 20.0.
        in: Student Wadsworth, Cengage Learning, Belmont, Calif2013
        • Kong X.
        • Xu J.
        • jun Mo J
        • Liu S
        Acute MS relapse.
        Front Optoelectron. 2017; : 799-814
      1. Kotz S., Balakrishnan N., Read CB V.B. Encyclopedia of statistical sciences. 2nd ed.Hoboken, N.J.: Wiley-Interscience; 2006.

        • Krieger S.
        • Sorrells S.F.
        • Nickerson M.
        • Pace T.W.W
        Mechanistic insights into corticosteroids in multiple sclerosis: war horse or chameleon?.
        Clin Neurol Neurosurg. 2014; 119: 6-16
        • Leone M.A.
        • Bonissoni S.
        • Collimedaglia L.
        • Tesser F.
        • Calzoni S.
        • Stecco A.
        • et al.
        Factors predicting incomplete recovery from relapses in multiple sclerosis: a prospective study.
        Mult. Scler. 2008; 14: 485-493
        • Leray E.
        • Yaouanq J.
        • Le Page E.
        • Coustans M.
        • Laplaud D.
        • Oger J.
        • et al.
        Evidence for a two-stage disability progression in multiple sclerosis.
        Brain. 2010; 133: 1900-1913
        • Lublin F.D.
        • Baier M.
        • Cutter G
        Effect of relapses on development of residual deficit in multiple sclerosis.
        Neurology. 2003; 61: 1528-1532
        • McNicholas N.
        • Hutchinson M.
        • McGuigan C.
        • Chataway J
        2017 McDonald diagnostic criteria: a review of the evidence. vol. 24.
        Mult. Scler. Relat. Disord. 2018; : 48-54
        • Miller D.M.
        • Weinstock-Guttman B.
        • Bethoux F.
        • Lee J.C.
        • Beck G.
        • Block V.
        • et al.
        A meta-analysis of methylprednisolone in recovery from multiple sclerosis exacerbations.
        Mult. Scler. 2000; 6: 267-273
        • Nakashima I.
        • Fujihara K.
        • Misu T.
        • Okita N.
        • Takase S.
        • Itoyama Y.
        Significant correlation between IL-10 levels and IGG indices in the cerebrospinal fluid of patients with multiple sclerosis.
        J Neuroimmunol [Internet]. 2000; 111 (Nov 1 [cited 2019 Apr 9] Available from): 64-67
        • Nickerson M.
        • Marrie R.A.
        The multiple sclerosis relapse experience: patient-reported outcomes from the North American research committee on multiple sclerosis (NARCOMS) registry.
        BMC Neurol. 2013; : 13
        • Pikor N.B.
        • Prat A.
        • Bar-Or A.
        • Gommerman J.L
        Meningeal tertiary lymphoid tissues and multiple sclerosis: a gathering place for diverse types of immune cells during cns autoimmunity.
        Front Immunol. 2016; : 6
        • Roed H.G.
        • Langkilde A.
        • Sellebjerg F.
        • Lauritzen M.
        • Bang P.
        • Mørup A.
        • et al.
        A double-blind, randomized trial of IV immunoglobulin treatment in acute optic neuritis.
        Neurology. 2005; 64: 804-810
        • Ross A.P.
        • Halper J.
        • Harris C.J
        Assessing relapses and response to relapse treatment in patients with multiple sclerosis: a nursing perspective.
        Int. J. MS Care [Internet]. 2012; 14 (Available from): 148-159
        • Saraste M.
        • Ryynänen J.
        • Alanen A.
        • Multanen J.
        • Färkkilä M.
        • Kaaja R.
        • et al.
        Cerebrospinal fluid findings in multiple sclerosis patients before, during and after pregnancy [2][Internet]. vol. 77.
        J. Neurol. 2006; (Neurosurgery and Psychiatry. BMJ Publishing Group[cited 2019 Apr 9Available from): 1195-1196
        • Stork L.
        • Ellenberger D.
        • Beißbarth T.
        • Friede T.
        • Lucchinetti C.F.
        • Brück W.
        • et al.
        Differences in the reponses to apheresis therapy of patients with 3 histopathologically classified immunopathological patterns of multiple sclerosis.
        JAMA Neurol. 2018; 75: 428-435
        • Thompson A.J.
        • Brazil J.
        • Whelan C.A.
        • Martin E.A.
        • Hutchinson M.
        • Feighery C
        Peripheral blood T lymphocyte changes in multiple sclerosis: a marker of disease progression rather than of relapse?.
        J. Neurol. Neurosurg. Psychiatry. 1986; 49: 905-912
        • Vasileiadis G.K.
        • Dardiotis E.
        • Mavropoulos A.
        • Tsouris Z.
        • Tsimourtou V.
        • Bogdanos D.P.
        • et al.
        Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? vol. 9.
        Autoimmunity Highlights. 2018;
        • Warnke C.
        • Stettner M.
        • Lehmensiek V.
        • Dehmel T.
        • Mausberg A.K.
        • Von Geldern G.
        • et al.
        Natalizumab exerts a suppressive effect on surrogates of b cell function in blood and CSF.
        Mult Scler. 2015; 21: 1036-1044
        • Weiner H.L.
        • Schocket A.L.
        Lymphocytes in multiple sclerosis: correlation with CSF immunoglobulins and cold-reactive lymphocytotoxic antibodies.
        Neurology [Internet]. 1979; 29 (Nov [cited 2019 Apr 9] Available from): 1504-1508
        • West T.
        • Wyatt M.
        • High A.
        • Bostrom A.
        • Waubant E
        Are initial demyelinating event recovery and time to second event under differential control?.
        Neurology. 2006; 67: 809-813