Advertisement

Temporal evolution of acute multiple sclerosis lesions on serial sodium (23Na) MRI

Published:January 17, 2019DOI:https://doi.org/10.1016/j.msard.2019.01.027

      Highlights

      • Sodium (23Na) MRI represents a sensitive marker of tissue integrity detecting tissue abnormalities in MS associated with tissue loss and widening of the extracellular space in focal lesions and the normal appearing brain tissue.
      • Hyperacute lesions presenting with reduced diffusion show sodium concentrations comparable to the normal-appearing white matter, suggesting a relatively preserved tissue structure.
      • These lesions could represent a target for early therapeutic intervention to minimize the evolving tissue damage.

      Abstract

      Background

      Several studies have reported the characteristics of acute multiple sclerosis (MS) lesions on diffusion-weighted magnetic resonance imaging (DWI MRI). Current publications reported a transient reduction of the apparent diffusion coefficient (ADC) delineating an early phase of lesion evolution, before increased diffusion occurs in parallel to blood-brain-barrier (BBB) breakdown. Sodium MRI might provide another perspective on lesion development, but clinical applications have been limited to high field MR systems. The objective in this study was to investigate the temporal evolution of acute MS lesions using conventional (T2-fluid-attenuated inversion recovery (T2-FLAIR) images, post-contrast T1-weighted images), diffusion and sodium MRI.

      Methods

      Initial and follow-up MRI (23Na and 1H MRI) were performed on a 3T scanner. Quantitative assessment of total sodium concentration (TSC) and ADC was performed. The study was designed for frequent follow-up MRI examinations during 4 weeks after the initial presentation.

      Results

      Thirty-one acute MS lesions (7 lesions with reduced diffusion) in eleven MS patients were included. On initial MRI, TSC in contrast-enhancing lesions was increased when compared to the normal-appearing white matter (NAWM), while lesions with an initial reduced diffusion showed a TSC comparable to the NAWM. On follow-up MRI, in lesions with reduced diffusion subsequent increase of ADC and TSC values occurred along with signs of the development of vasogenic edema and contrast-enhancement. After four weeks, TSC values decreased along with regression of vasogenic edema and contrast-enhancement.

      Conclusions

      In lesions with a reduction of the ADC sodium levels are near normal and precede signs of BBB breakdown. These findings suggest a relatively preserved tissue structure in this early phase of lesion evolution.

      Keywords

      Abbreviations:

      23Na (sodium), ADC (apparent diffusion coefficient), BBB (blood brain barrier), CSF (Cerebrospinal fluid), DWI (diffusion-weighted imaging), EDSS (Expanded Disability Status Scale), Gd (Gadolinium), MPRAGE (magnetization-prepared rapid acquisition gradient-echo), MRI (magnetic resonance imaging), MS (multiple sclerosis), NAWM (normal-appearing white matter), TSC (total sodium concentration)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abou Zeid N.
        • Pirko I.
        • Erickson B.
        • Weigand S.D.
        • Thomsen K.M.
        • Scheithauer B.
        • Parisi J.E.
        • Giannini C.
        • Linbo L.
        • Lucchinetti C.F.
        Diffusion-weighted imaging characteristics of biopsy-proven demyelinating brain lesions.
        Neurology. 2012; 78: 1655-1662
        • Balashov K.E.
        • Lindzen E.
        Acute demyelinating lesions with restricted diffusion in multiple sclerosis.
        Mult. Scler. 2012; 18: 1745-1753
        • Davies A.L.
        • Desai R.A.
        • Bloomfield P.S.
        • McIntosh P.R.
        • Chapple K.J.
        • Linington C.
        • Fairless R.
        • Diem R.
        • Kasti M.
        • Murphy M.P.
        • Smith K.J.
        Neurological deficits caused by tissue hypoxia in neuroinflammatory disease.
        Ann. Neurol. 2013; 74: 815-825
        • Desai R.A.
        • Davies A.L.
        • Tachrount M.
        • Kasti M.
        • Laulund F.
        • Golay X.
        • Smith K.J.
        Cause and prevention of demyelination in a model multiple sclerosis lesion.
        Ann. Neurol. 2016; 79: 591-604
        • Eisele P.
        • Alonso A.
        • Szabo K.
        • Gass A.
        Reduced diffusion in acute cervical cord multiple sclerosis lesions.
        Neurol. Clin. Pract. 2017; 7: 401-403
        • Eisele P.
        • Konstandin S.
        • Griebe M.
        • Szabo K.
        • Wolf M.E.
        • Alonso A.
        • Ebert A.
        • Serwane J.
        • Rossmanith C.
        • Hennerici M.G.
        • Schad L.R.
        • Gass A.
        Heterogeneity of acute multiple sclerosis lesions on sodium (23Na) MRI.
        Mult. Scler. 2016; 22: 1040-1047
        • Eisele P.
        • Konstandin S.
        • Szabo K.
        • Ong M.
        • Zollner F.
        • Schad L.R.
        • Schoenberg S.O.
        • Gass A.
        Sodium MRI of T1 high signal intensity in the dentate nucleus due to gadolinium deposition in multiple sclerosis.
        J Neuroimaging. 2017; 27: 372-375
        • Eisele P.
        • Szabo K.
        • Griebe M.
        • Rossmanith C.
        • Forster A.
        • Hennerici M.
        • Gass A.
        Reduced diffusion in a subset of acute MS lesions: a serial multiparametric MRI study.
        AJNR Am. J. Neuroradiol. 2012; 33: 1369-1373
        • Eisele P.
        • Szabo K.
        • Griebe M.
        • Wolf M.E.
        • Hennerici M.G.
        • Gass A.
        Cerebrospinal fluid pleocytosis in multiple sclerosis patients with lesions showing reduced diffusion.
        Mult. Scler. 2014; 20: 1391-1395
        • Fiebach J.B.
        • Jansen O.
        • Schellinger P.D.
        • Heiland S.
        • Hacke W.
        • Sartor K.
        Serial analysis of the apparent diffusion coefficient time course in human stroke.
        Neuroradiology. 2002; 44: 294-298
        • Filippi M.
        • Iannucci G.
        • Cercignani M.
        • Assunta Rocca M.
        • Pratesi A.
        • Comi G.
        A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging.
        Arch. Neurol. 2000; 57: 1017-1021
        • Friese M.A.
        • Schattling B.
        • Fugger L.
        Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis.
        Nat. Rev. Neurol. 2014; 10: 225-238
        • Hussain M.S.
        • Stobbe R.W.
        • Bhagat Y.A.
        • Emery D.
        • Butcher K.S.
        • Manawadu D.
        • Rizvi N.
        • Maheshwari P.
        • Scozzafava J.
        • Shuaib A.
        • Beaulieu C.
        Sodium imaging intensity increases with time after human ischemic stroke.
        Ann. Neurol. 2009; 66: 55-62
        • Inglese M.
        • Madelin G.
        • Oesingmann N.
        • Babb J.S.
        • Wu W.
        • Stoeckel B.
        • Herbert J.
        • Johnson G.
        Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3T.
        Brain. 2010; 133: 847-857
        • Jenkinson M.
        • Bannister P.
        • Brady M.
        • Smith S.
        Improved optimization for the robust and accurate linear registration and motion correction of brain images.
        Neuroimage. 2002; 17: 825-841
        • Jenkinson M.
        • Smith S.
        A global optimisation method for robust affine registration of brain images.
        Med. Image Anal. 2001; 5: 143-156
        • Kurtzke J.F.
        Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
        Neurology. 1983; 33: 1444-1452
        • Maarouf A.
        • Audoin B.
        • Konstandin S.
        • Rico A.
        • Soulier E.
        • Reuter F.
        • Le Troter A.
        • Confort-Gouny S.
        • Cozzone P.J.
        • Guye M.
        • Schad L.R.
        • Pelletier J.
        • Ranjeva J.P.
        • Zaaraoui W.
        Topography of brain sodium accumulation in progressive multiple sclerosis.
        Magma. 2014; 27: 53-62
        • Munoz Maniega S.
        • Bastin M.E.
        • Armitage P.A.
        • Farrall A.J.
        • Carpenter T.K.
        • Hand P.J.
        • Cvoro V.
        • Rivers C.S.
        • Wardlaw J.M.
        Temporal evolution of water diffusion parameters is different in grey and white matter in human ischaemic stroke.
        J. Neurol. Neurosurg. Psychiatry. 2004; 75: 1714-1718
        • Nikic I.
        • Merkler D.
        • Sorbara C.
        • Brinkoetter M.
        • Kreutzfeldt M.
        • Bareyre F.M.
        • Bruck W.
        • Bishop D.
        • Misgeld T.
        • Kerschensteiner M.
        A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis.
        Nat. Med. 2011; 17: 495-499
        • Ouwerkerk R.
        • Bleich K.B.
        • Gillen J.S.
        • Pomper M.G.
        • Bottomley P.A.
        Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging.
        Radiology. 2003; 227: 529-537
        • Paling D.
        • Solanky B.S.
        • Riemer F.
        • Tozer D.J.
        • Wheeler-Kingshott C.A.
        • Kapoor R.
        • Golay X.
        • Miller D.H.
        Sodium accumulation is associated with disability and a progressive course in multiple sclerosis.
        Brain. 2013; 136: 2305-2317
        • Petracca M.
        • Vancea R.O.
        • Fleysher L.
        • Jonkman L.E.
        • Oesingmann N.
        • Inglese M.
        Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.
        Brain. 2016; 139: 795-806
        • Raftopoulos R.
        • Hickman S.J.
        • Toosy A.
        • Sharrack B.
        • Mallik S.
        • Paling D.
        • Altmann D.R.
        • Yiannakas M.C.
        • Malladi P.
        • Sheridan R.
        • Sarrigiannis P.G.
        • Hoggard N.
        • Koltzenburg M.
        • Gandini Wheeler-Kingshott C.A.
        • Schmierer K.
        • Giovannoni G.
        • Miller D.H.
        • Kapoor R.
        Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial.
        Lancet Neurol. 2016; 15: 259-269
        • Smith S.M.
        Fast robust automated brain extraction.
        Hum. Brain Mapp. 2002; 17: 143-155
        • Sorbara C.D.
        • Wagner N.E.
        • Ladwig A.
        • Nikic I.
        • Merkler D.
        • Kleele T.
        • Marinkovic P.
        • Naumann R.
        • Godinho L.
        • Bareyre F.M.
        • Bishop D.
        • Misgeld T.
        • Kerschensteiner M.
        Pervasive axonal transport deficits in multiple sclerosis models.
        Neuron. 2014; 84: 1183-1190
        • Su K.G.
        • Banker G.
        • Bourdette D.
        • Forte M.
        Axonal degeneration in multiple sclerosis: the mitochondrial hypothesis.
        Curr. Neurol. Neurosci. Rep. 2009; 9: 411-417
        • Tavazzi E.
        • Dwyer M.G.
        • Weinstock-Guttman B.
        • Lema J.
        • Bastianello S.
        • Bergamaschi R.
        • Cosi V.
        • Benedict R.H.
        • Munschauer F.E.
        • Zivadinov R.
        Quantitative diffusion weighted imaging measures in patients with multiple sclerosis.
        Neuroimage. 2007; 36 (3rd): 746-754
        • Tsang A.
        • Stobbe R.W.
        • Asdaghi N.
        • Hussain M.S.
        • Bhagat Y.A.
        • Beaulieu C.
        • Emery D.
        • Butcher K.S.
        Relationship between sodium intensity and perfusion deficits in acute ischemic stroke.
        J. Magn. Reson. Imaging. 2011; 33: 41-47
        • Werring D.J.
        • Brassat D.
        • Droogan A.G.
        • Clark C.A.
        • Symms M.R.
        • Barker G.J.
        • MacManus D.G.
        • Thompson A.J.
        • Miller D.H.
        The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study.
        Brain. 2000; 123: 1667-1676
        • Zaaraoui W.
        • Konstandin S.
        • Audoin B.
        • Nagel A.M.
        • Rico A.
        • Malikova I.
        • Soulier E.
        • Viout P.
        • Confort-Gouny S.
        • Cozzone P.J.
        • Pelletier J.
        • Schad L.R.
        • Ranjeva J.P.
        Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study.
        Radiology. 2012; 264: 859-867
        • Zhang Y.
        • Brady M.
        • Smith S.
        Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.
        IEEE Trans. Med. Imaging. 2001; 20: 45-57