Advertisement

Prevalence of fatigue and its association with clinical features in progressive and non-progressive forms of Multiple Sclerosis

Published:January 03, 2019DOI:https://doi.org/10.1016/j.msard.2019.01.011

      Highlights

      • Fatigue is a common symptom of MS and has a higher prevalence in progressive forms of the disease.
      • Fatigue impact and severity are associated with higher levels of disability, poorer quality of life, greater depression and anxiety, and poor cognition and sleep quality in people with MS.
      • The strength of association between fatigue severity/impact and the clinical features examined was generally similar in progressive and non-progressive MS populations with the exceptions of disability (only associated with fatigue in people with non-progressive MS), and anxiety and the physical impact of MS (outcomes were more strongly associated with fatigue in people with progressive MS and non-progressive MS respectively).

      Abstract

      Background

      Fatigue is a complex and disabling symptom of Multiple Sclerosis (MS); however, there is conflicting evidence of the relationship between fatigue and clinical features of MS. Furthermore, few studies have considered these relationships specifically in a progressive MS population.

      Aims

      (1) estimate the prevalence of self-reported fatigue in people with MS; (2) evaluate the relationship between fatigue severity/impact and clinical features of MS; (3) compare the prevalence of fatigue, and the strength of relationship between fatigue severity/impact and clinical features of MS in progressive and non-progressive forms of MS.

      Methods

      An online survey was conducted to measure the severity (Fatigue Severity Scale (FSS)) and impact of self-reported fatigue (Modified Fatigue Impact Scale) in people with MS. The survey also contained questionnaires related to disability, quality of life, MS impact, anxiety and depression, cognition, and sleep quality.

      Results

      412 people responded to the survey, of which 68.7% reported having fatigue (FSS ≥ 5). The prevalence of fatigue was significantly higher in participants with progressive MS (81%) in comparison to those with non-progressive forms of MS (64%, p = 0.01). Fatigue severity and impact were associated with quality of life, MS impact, anxiety, depression, cognition, and sleep quality in both progressive and non-progressive MS populations (p < 0.05). However, fatigue severity (r = 0.335) and impact (r = 0.391) were correlated with disability only in participants with non-progressive MS.

      Conclusion

      Fatigue was more prevalent amongst participants with progressive MS. In addition, higher fatigue severity and impact were associated with greater physical, cognitive, and psychological impairment, although the strength of association between these outcomes was generally similar regardless of the type of MS.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amato M.P.
        • Zipoli V.
        • Portaccio E.
        Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies.
        J. Neurol. Sci. 2006; 245: 41-46
        • Amtmann D.
        • Bamer A.M.
        • Noonan V.
        • Lang N.
        • Kim J.
        • Cook K.F.
        Comparison of the psychometric properties of two fatigue scales in multiple sclerosis.
        Rehabil. Psychol. 2012; 57: 159-166
        • Andreasen A.K.
        • Spliid P.E.
        • Andersen H.
        • Jakobsen J.
        Fatigue and processing speed are related in multiple sclerosis.
        Eur. J. Neurol. 2010; 17: 212-218
        • Bakshi R.
        Fatigue associated with multiple sclerosis: diagnosis, impact and management.
        Mult. Scler. 2003; 9: 219-227
        • Bakshi R.
        • Shaikh Z.A.
        • Miletich R.S.
        • Czarnecki D.
        • Dmochowski J.
        • Henschel K.
        • et al.
        Fatigue in multiple sclerosis and its relationship to depression and neurologic disability.
        Mult. Scler. 2000; 6: 181-185
        • Benedict R.H.
        • Cox D.
        • Thompson L.L.
        • Foley F.
        • Weinstock-Guttman B.
        • Munschauer F.
        Reliable screening for neuropsychological impairment in multiple sclerosis.
        Mult. Scler. 2004; 10: 675-678
        • Benedict R.H.
        • Duquin J.A.
        • Jurgensen S.
        • Rudick R.A.
        • Feitcher J.
        • Munschauer F.E.
        • et al.
        Repeated assessment of neuropsychological deficits in multiple sclerosis using the Symbol Digit Modalities Test and the MS Neuropsychological Screening Questionnaire.
        Mult. Scler. 2008; 14: 940-946
        • Benedict R.H.
        • Munschauer F.
        • Linn R.
        • Miller C.
        • Murphy E.
        • Foley F.
        • et al.
        Screening for multiple sclerosis cognitive impairment using a self-administered 15-item questionnaire.
        Mult. Scler. 2003; 9: 95-101
        • Brown R.F.
        • Valpiani E.M.
        • Tennant C.C.
        • Dunn S.M.
        • Sharrock M.
        • Hodgkinson S.
        • et al.
        Longitudinal assessment of anxiety, depression, and fatigue in people with multiple sclerosis.
        Psychol. Psychother. 2009; 82: 41-56
        • Buysse D.J.
        • Reynolds C.F.
        • 3rd M.T.H.
        • Berman S.R.
        • Kupfer D.J.
        The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research.
        Psychiatry Res. 1989; 28: 193-213
        • Carpenter J.S.
        Andrykowski MA. Psychometric evaluation of the Pittsburgh Sleep Quality Index.
        J. Psychosom. Res. 1998; 45: 5-13
        • Compston A.
        • Coles A.
        Multiple sclerosis.
        Lancet. 2008; 372: 1502-1517
        • Dolan P.
        Modeling valuations for EuroQol health states.
        Med. Care. 1997; 35: 1095-1108
        • EuroQol Group
        EuroQol–a new facility for the measurement of health-related quality of life.
        Health Policy. 1990; 16: 199-208
        • Fiest K.M.
        • Fisk J.D.
        • Patten S.B.
        • Tremlett H.
        • Wolfson C.
        • Warren S.
        • et al.
        Fatigue and comorbidities in multiple sclerosis.
        Int. J. MS Care. 2016; 18: 96-104
        • Fisher R.A.
        Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population.
        Biometrika. 1915; 10: 507-521
        • Fisk J.D.
        • Pontefract A.
        • Ritvo P.G.
        • Archibald C.J.
        • Murray T.J.
        The impact of fatigue on patients with multiple sclerosis.
        Can. J. Neurol. Sci. 1994; 21: 9-14
        • Flachenecker P.
        • Kümpfel T.
        • Kallmann B.
        • Gottschalk M.
        • Grauer O.
        • Rieckmann P.
        • et al.
        Fatigue in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters.
        Mult. Scler. 2002; 8: 523-526
        • Ford H.
        • Trigwell P.
        • Johnson M.
        The nature of fatigue in multiple sclerosis.
        J. Psychosom. Res. 1998; 45: 33-38
        • Gray O.
        • McDonnell G.
        • Hawkins S.
        Tried and tested: the psychometric properties of the Multiple Sclerosis Impact Scale (MSIS-29) in a population-based study.
        Mult. Scler. 2009; 15: 75-80
        • Hadjimichael O.
        • Vollmer T.
        • Oleen-Burkey M.
        North American Research Committee on Multiple Sclerosis. Fatigue characteristics in multiple sclerosis: the North American Research Committee on Multiple Sclerosis (NARCOMS) survey.
        Health Qual. Life Outcomes. 2008; 6: 1-11
        • Harris P.A.
        • Taylor R.
        • Thielke R.
        • Payne J.
        • Gonzalez N.
        • Conde J.G.
        Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support.
        J. Biomed. Inform. 2009; 42: 377-381
        • Heesen C.
        • Schulz K.H.
        • Fiehler J.
        • Von der Mark U.
        • Otte C.
        • Jung R.
        • et al.
        Correlates of cognitive dysfunction in multiple sclerosis.
        Brain Behav. Immun. 2010; 24: 1148-1155
        • Hinkle D.E.
        • Wiersma W.
        • Jurs S.G.
        Applied Statistics for the Behavioral Sciences.
        Houghton Mifflin, Boston1988
        • Hobart J.
        • Cano S.
        • Baron R.
        • Thompson A.
        • Schwid S.
        • Zajicek J.
        • et al.
        Achieving valid patient-reported outcomes measurement: a lesson from fatigue in multiple sclerosis.
        Mult. Scler. 2013; 19: 1773-1783
        • Hobart J.
        • Lamping D.
        • Fitzpatrick R.
        • Riazi A.
        • Thompson A.
        The Multiple Sclerosis Impact Scale (MSIS-29): a new patient-based outcome measure.
        Brain. 2001; 124: 962-973
        • Hohol M.J.
        • Orav E.J.
        • Weiner H.L.
        Disease steps in multiple sclerosis: a simple approach to evaluate disease progression.
        Neurology. 1995; 45: 251-255
        • Honarmand K.
        • Feinstein A.
        Validation of the Hospital Anxiety and Depression Scale for use with multiple sclerosis patients.
        Mult. Scler. 2009; 15: 1518-1524
        • Induruwa I.
        • Constantinescu C.S.
        • Gran B.
        Fatigue in multiple sclerosis — a brief review.
        J. Neurol. Sci. 2012; 323: 9-15
        • Iriarte J.
        • Subira M.L.
        • Castro P.
        Modalities of fatigue in multiple sclerosis: correlation with clinical and biological factors.
        Mult. Scler. 2000; 6: 124-130
        • James Lind Alliance
        MS Priority Setting Partnership.
        National Institute for Health Research Evaluation: James Lind Alliance, 2013
        • Janardhan V.
        • Bakshi R.
        Quality of life in patients with multiple sclerosis: the impact of fatigue and depression.
        J. Neurol. Sci. 2002; 205: 51-58
        • Johansson S.
        • Ytterberg C.
        • Hillert J.
        • Widen Holmqvist L.
        • von Koch L.
        A longitudinal study of variations in and predictors of fatigue in multiple sclerosis.
        J. Neurol. Neurosurg. Psychiatry. 2008; 79: 454-457
        • Kos D.
        • Kerckhofs E.
        • Carrea I.
        • Verza R.
        • Ramos M.
        • Jansa J.
        Evaluation of the modified fatigue impact scale in four different European countries.
        Mult. Scler. 2005; 11: 76-80
        • Kos D.
        • Kerckhofs E.
        • Nagels G.
        • D'Hooghe B.D.
        • Duquet W.
        • Duportail M.
        • et al.
        Assessing fatigue in multiple sclerosis: Dutch modified fatigue impact scale.
        Acta Neurol. Belg. 2003; 103: 185-191
        • Kos D.
        • Kerckhofs E.
        • Nagels G.
        • D'hooghe M.B.
        • Ilsbroukx S.
        Origin of fatigue in multiple sclerosis: review of the literature.
        Neurorehabil. Neural Repair. 2008; 22: 91-100
        • Kroencke D.C.
        • Lynch S.G.
        • Denney D.R.
        Fatigue in multiple sclerosis: relationship to depression, disability, and disease pattern.
        Mult. Scler. 2000; 6: 131-136
        • Krupp L.B.
        • Alvarez L.A.
        • LaRocca N.G.
        • Scheinberg L.C.
        Fatigue in multiple sclerosis.
        Arch. Neurol. 1988; 45: 435-437
        • Krupp L.B.
        • LaRocca N.G.
        • Muir-Nash J.
        • Steinberg A.D.
        The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus.
        Arch. Neurol. 1989; 46: 1121-1123
        • Langeskov-Christensen M.
        • Bisson E.J.
        • Finlayson M.L.
        • Dalgas U.
        Potential pathophysiological pathways that can explain the positive effects of exercise on fatigue in multiple sclerosis: a scoping review.
        J. Neurol. Sci. 2017; 373: 307-320
        • Lassmann H.
        Targets of therapy in progressive MS.
        Mult. Scler. 2017; 23: 1593-1599
        • Learmonth Y.C.
        • Dlugonski D.
        • Pilutti L.A.
        • Sandroff B.M.
        • Klaren R.
        • Motl R.W.
        Psychometric properties of the fatigue severity scale and the modified fatigue impact scale.
        J. Neurol. Sci. 2013; 331: 102-107
        • Lerdal A.
        • Celius E.G.
        • Krupp L.
        • Dahl A.A.
        A prospective study of patterns of fatigue in multiple sclerosis.
        Eur. J. Neurol. 2007; 14: 1338-1343
        • Lerdal A.
        • Celius E.G.
        • Moum T.
        Fatigue and its association with sociodemographic variables among multiple sclerosis patients.
        Mult. Scler. 2003; 9: 509-514
        • Mackenzie I.S.
        • Morant S.V.
        • Bloomfield G.A.
        • Macdonald T.M.
        • O'Riordan J.
        Incidence and prevalence of multiple sclerosis in the UK 1990–2010: a descriptive study in the General Practice Research Database.
        J. Neurol. Neurosurg. Psychiatry. 2014; 85: 76-84
        • Mahad D.
        • Trapp B.
        • Lassmann H.
        Pathological mechanisms in progressive multiple sclerosis.
        Lancet Neurol. 2015; 14: 183-193
        • Marrie R.A.
        • Reider N.
        • Cohen J.
        • Trojano M.
        • Sorensen P.S.
        • Cutter G.
        • et al.
        A systematic review of the incidence and prevalence of sleep disorders and seizure disorders in multiple sclerosis.
        Mult. Scler. 2015; 21: 342-349
        • McGuigan C.
        • Hutchinson M.
        The multiple sclerosis impact scale (MSIS-29) is a reliable and sensitive measure.
        J. Neurol. Neurosurg. Psychiatry. 2004; 75: 266-269
        • Mills R.J.
        • Young C.A.
        The relationship between fatigue and other clinical features of multiple sclerosis.
        Mult. Scler. 2011; 17: 604-612
        • Moore P.
        • Harding K.E.
        • Clarkson H.
        • Pickersgill T.P.
        • Wardle M.
        • Robertson N.P.
        Demographic and clinical factors associated with changes in employment in multiple sclerosis.
        Mult. Scler. 2013; 19: 1647-1654
        • Multiple Sclerosis Council for Clinical Practice Guidelines
        Fatigue and Multiple Sclerosis: Evidence-based management Strategies for Fatigue in Multiple Sclerosis.
        Paralyzed Veterans of America., Washington D.C1998
        • Nociti V.
        • Losavio F.A.
        • Gnoni V.
        • Losurdo A.
        • Testani E.
        • Vollono C.
        • et al.
        Sleep and fatigue in multiple sclerosis: a questionnaire-based, cross-sectional, cohort study.
        J. Neurol. Sci. 2017; 372: 387-392
        • Patejdl R.
        • Penner I.K.
        • Noack T.K.
        • Zettl U.K.
        Multiple sclerosis and fatigue: a review on the contribution of inflammation and immune-mediated neurodegeneration.
        Autoimmun. Rev. 2016; 15: 210-220
        • Rietberg M.B.
        • Van Wegen E.E.
        • Kwakkel G.
        Measuring fatigue in patients with multiple sclerosis: reproducibility, responsiveness and concurrent validity of three Dutch self-report questionnaires.
        Disabil. Rehabil. 2010; 32: 1870-1876
        • Schwartz C.E.
        • Vollmer T.
        • Lee H.
        Reliability and validity of two self-report measures of impairment and disability for MS. North American Research Consortium on Multiple Sclerosis Outcomes Study Group.
        Neurology. 1999; 52: 63-70
        • Stanton B.R.
        • Barnes F.
        • Silber E.
        Sleep and fatigue in multiple sclerosis.
        Mult. Scler. 2006; 12: 481-486
        • Strober L.B.
        Arnett PA. An examination of four models predicting fatigue in multiple sclerosis.
        Arch. Clin. Neuropsychol. 2005; 20: 631-646
        • Tellez N.
        • Rio J.
        • Tintore M.
        • Nos C.
        • Galan I.
        • Montalban X.
        Does the Modified Fatigue Impact Scale offer a more comprehensive assessment of fatigue in MS?.
        Mult. Scler. 2005; 11: 198-202
        • Tellez N.
        • Rio J.
        • Tintore M.
        • Nos C.
        • Galan I.
        • Montalban X.
        Fatigue in multiple sclerosis persists over time: a longitudinal study.
        J. Neurol. 2006; 253: 1466-1470
        • Wood B.
        • van der Mei I.A.
        • Ponsonby A.L.
        • Pittas F.
        • Quinn S.
        • Dwyer T.
        • et al.
        Prevalence and concurrence of anxiety, depression and fatigue over time in multiple sclerosis.
        Mult. Scler. 2013; 19: 217-224
        • Zajicek J.P.
        • Ingram W.M.
        • Vickery J.
        • Creanor S.
        • Wright D.E.
        • Hobart J.C.
        Patient-orientated longitudinal study of multiple sclerosis in south west England (The South West Impact of Multiple Sclerosis Project, SWIMS) 1: protocol and baseline characteristics of cohort.
        BMC Neurol. 2010; 10: 1-11
        • Zigmond A.S.
        • Snaith R.P.
        The hospital anxiety and depression scale.
        Acta Psychiatr. Scand. 1983; 67: 361-370