Advertisement
Research Article| Volume 22, P120-127, May 2018

Download started.

Ok

Characterisation of cardiac autonomic function in multiple sclerosis based on spontaneous changes of heart rate and blood pressure

      Highlights

      • Prevalence of cardiac dysautonomia in multiple sclerosis varies between studies.
      • Diminished sympathetic function was found in multiple sclerosis.
      • Baroreceptor reflex was decreased in multiple sclerosis compared to controls.
      • Baroreceptor sensitivity can quantify cardiac dysautonomia in multiple sclerosis.

      Abstract

      Background

      Prevalence of cardiovascular autonomic dysfunction (CAD) in multiple sclerosis (MS) varies between studies. Cardiac autonomic function is usually assessed by cardiovascular reflex tests. We hypothesized that MS is associated with CAD, quantifiable by non-invasive means including quantification of baroreceptor sensitivity (BRS) and heart rate variability.

      Methods

      In this study a comprehensive suite of cardiovascular autonomic tests based only on the spontaneous changes of heart rate and blood pressure was applied to 23 MS patients and age and gender-matched controls. From 5-min continuous non-invasive recording of the electrocardiogram and blood pressure, heart-rate, blood pressure, and autonomic function variables were calculated. Analysis included heart rate variability in the time domain, heart rate and blood pressure variability in the frequency domain, and baroreceptor sensitivity in both the time and frequency domain.

      Results

      BRS measured by the frequency technique in high frequency band was found to be significantly lower in MS (16 ± 9 ms/mmHg) compared to controls (29 ± 17 ms/mmHg) (p < 0.05). Also mean of BRS modulus in MS averaged 15 ± 8 ms/mmHg which is significantly lower compared to controls (25 ± 15 ms/mmHg) (p < 0.05). Systolic blood pressure variability in the high frequency band (0.15–0.5 Hz) was found to be significantly higher in the MS compared to controls (5.8 ± 16.7 mmHg2 vs. 1.3 ± 0.8 mmHg2) (p < 0.05).

      Conclusions

      The results, using techniques novel to MS investigation, showed diminished baroreceptor reflex and impaired sympathetic function using frequency domain systolic blood pressure variability analysis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Acharya U.R.
        • Joseph K.P.
        • Kannathal N.
        • Lim C.M.
        • Suri J.S.
        Heart rate variability: a review.
        Med. Biol. Eng. Comput. 2006; 44: 1031-1051https://doi.org/10.1007/s11517-006-0119-0
        • Adamec I.
        • Habek M.
        Autonomic dysfunction in multiple sclerosis.
        Clin. Neurol. Neurosurg. 2013; 115: S73-S78https://doi.org/10.1016/j.clineuro.2013.09.026
        • Benarroch E.E.
        Autonomic Neurology.
        Oxford University Press, 2014 (https://doi.org/10.1093/med/9780199920198.001.0001)
        • Berntson G.G.
        • Bigger J.T.
        • Eckberg D.L.
        • Grossman P.
        • Kaufmann P.G.
        • Malik M.
        • Nagaraja H.N.
        • Porges S.W.
        • Saul J.P.
        • Stone P.H.
        • van der Molen M.W.
        Heart rate variability: origins, methods, and interpretive caveats.
        Psychophysiology. 1997; 34: 623-648
        • Bramow S.
        • Faber-Rod J.C.
        • Jacobsen C.
        • Kutzelnigg a.
        • Patrikios P.
        • Sorensen P.S.
        • Lassmann H.
        • Laursen H.
        Fatal neurogenic pulmonary edema in a patient with progressive multiple sclerosis.
        Mult. Scler. 2008; 14: 711-715https://doi.org/10.1177/1352458507087848
        • Camm J.
        • Hla T.
        • Bakshi R.
        • Brinkmann V.
        Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications.
        Am. Heart J. 2014; 168: 632-644https://doi.org/10.1016/j.ahj.2014.06.028
        • Clifford G.D.
        Signal Processing Methods for Heart Rate Variability.
        University of Oxford, 2002
        • de Seze J.
        • Stojkovic T.
        • Gauvrit J.Y.
        • Devos D.
        • Ayachi M.
        • Cassim F.
        • Saint Michel T.
        • Pruvo J.P.
        • Guieu J.D.
        • Vermersch P.
        Autonomic dysfunction in multiple sclerosis: cervical spinal cord atrophy correlates.
        J. Neurol. 2001; 248: 297-303
        • Di Rienzo M.
        • Parati G.
        • Castiglioni P.
        • Tordi R.
        • Mancia G.
        • Pedotti a.
        Baroreflex effectiveness index: an additional measure of baroreflex control of heart rate in daily life.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001; 280: R744-R751
        • Di Rienzo M.
        • Parati G.
        • Radaelli A.
        • Castiglioni P.
        Baroreflex contribution to blood pressure and heart rate oscillations: time scales, time-variant characteristics and nonlinearities.
        Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009; 367: 1301-1318https://doi.org/10.1098/rsta.2008.0274
        • Draghici A.E.
        • Taylor J.A.
        The physiological basis and measurement of heart rate variability in humans.
        J. Physiol. Anthropol. 2016; 35: 1-8https://doi.org/10.1186/s40101-016-0113-7
        • Eeftinck Schattenkerk D.W.
        • van Lieshout J.J.
        • van den Meiracker a.H.
        • Wesseling K.R.
        • Blanc S.
        • Wieling W.
        • van Montfrans G. a.
        • Settels J.J.
        • Wesseling K.H.
        • Westerhof B.E.
        Nexfin noninvasive continuous blood pressure validated against Riva-Rocci/Korotkoff.
        Am. J. Hypertens. 2009; 22: 378-383https://doi.org/10.1038/ajh.2008.368
        • Flachenecker P.
        • Reiners K.
        • Krauser M.
        • Wolf A.
        • Toyka K.V.
        Autonomic dysfunction in multiple sclerosis is related to disease activity and progression of disability.
        Mult. Scler. 2001; 7: 327-334https://doi.org/10.1191/135245801681138031
        • Frattola A.
        • Parati G.
        • Gamba P.
        • Paleari F.
        • Mauri G.
        • Di Rienzo M.
        • Castiglioni P.
        • Mancia G.
        Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus.
        Diabetologia. 1997; 40: 1470-1475https://doi.org/10.1007/s001250050851
        • Freeman R.
        Assessment of cardiovascular autonomic function.
        Clin. Neurophysiol. 2006; 117: 716-730https://doi.org/10.1016/j.clinph.2005.09.027
        • Frontoni M.
        • Fiorini M.
        • Strano S.
        • Giubilei F.
        • Urani C.
        • Bastianello S.
        • Pozzillil C.
        Power spectrum analysis contribution to the detection of cardiovascular dysautonomi in multiple sclerosis.
        Acta Neurol. Scand. 1996; 93: 241-245
        • Habek M.
        • Crnošija L.
        • Lovrić M.
        • Junaković A.
        • Krbot Skorić M.
        • Adamec I.
        Sympathetic cardiovascular and sudomotor functions are frequently affected in early multiple sclerosis.
        Clin. Auton. Res. 2016; 26: 385-393https://doi.org/10.1007/s10286-016-0370-x
        • Hengstman G.
        • Kusters B.
        Sudden cardiac death in multiple sclerosis caused by active demyelination of the medulla oblongata.
        Mult. Scler. 2011; 17: 1146-1148https://doi.org/10.1177/1352458511408476
        • Hennessey A.
        • Robertson N.P.
        • Swingler R.
        • Compston D.A.
        Urinary, faecal and sexual dysfunction in patients with multiple sclerosis.
        J. Neurol. 1999; 246: 1027-1032
        • Höcht C.
        Blood pressure variability: prognostic value and therapeutic implications.
        ISRN Hypertens. 2013; 2013: 1-16https://doi.org/10.5402/2013/398485
        • Holwerda S.W.
        • Samels M.R.
        • Keller D.M.
        Carotid baroreflex responsiveness in normotensive african americans is attenuated at rest and during dynamic leg exercise.
        Front. Physiol. 2013; 4: 1-9https://doi.org/10.3389/fphys.2013.00029
        • Huang M.
        • Allen D.R.
        • Keller D.M.
        • Fadel P.J.
        • Frohman E.M.
        • Davis S.L.
        Impaired carotid baroreflex control of arterial blood pressure in multiple sclerosis.
        J. Neurophysiol. 2016; 116: 81-87https://doi.org/10.1152/jn.00003.2016
        • Kahn R.
        Autonomic nervous system testing.
        Diabetes Care. 1992; 15: 1095-1103
        • Kardos A.
        • Menezes R. De
        • Casadei B.
        Determinants of spontaneous Baroreflex sensitivity in a healthy working population.
        Hypertension. 2001; 37: 911-916
        • Keselbrener L.
        • Akselrod S.
        • Ahiron a.
        • Eldar M.
        • Barak Y.
        • Rotstein Z.
        Is fatigue in patients with multiple sclerosis related to autonomic dysfunction?.
        Clin. Auton. Res. 2000; 10: 169-175
        • Kodounis A.
        • Stamboulis E.
        • Constantinidis T.S.
        • Liolios a.
        Measurement of autonomic dysregulation in multiple sclerosis.
        Acta Neurol. Scand. 2005; 112: 403-408https://doi.org/10.1111/j.1600-0404.2005.00446.x
        • Konecny L.
        • Pospisil P.
        • Anbais F.H.
        • Fiser B.
        • Pohanka M.
        • Siegelova J.
        • Dobsak P.
        Baroreflex sensitivity in multiple sclerosis.
        Scr. Med. (Brno). 2008; 81: 231-238
        • Kurtzke J.F.
        Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
        Neurology. 1983; 33: 1444-1452https://doi.org/10.1212/WNL.33.11.1444
        • La Rovere M.T.
        • Pinna G.D.
        • Raczak G.
        Baroreflex sensitivity: measurement and clinical implications.
        Ann. Noninvasive Electrocardiol. 2008; 13: 191-207https://doi.org/10.1111/j.1542-474X.2008.00219.x
        • Lensch E.
        • Jost W.H.
        Autonomic disorders in multiple sclerosis.
        Autoimmune Dis. 2011; 2011: 1-6https://doi.org/10.4061/2011/803841
        • Liao D.
        • Barnes R.W.
        • Chambless L.E.
        • Simpson R.J.
        • Sorlie P.
        • Heiss G.
        • The ARIC Investigators
        Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability-The ARIC study.
        Am. J. Cardiol. 1995; 76: 906-912https://doi.org/10.1016/S0002-9149(99)80260-4
        • Linden D.
        • Diehl R.R.
        • Kretzschmar A.
        • Berlit P.
        Autonomic evaluation by means of standard tests and power spectral analysis in multiple sclerosis.
        Muscle Nerve. 1997; 20: 809-814https://doi.org/10.1002/(SICI)1097-4598(199707)20:7<809::AID-MUS4>3.0.CO;2-B
        • Mahovic D.
        • Lakusic N.
        Progressive impairment of autonomic control of heart rate in patients with multiple sclerosis.
        Arch. Med. Res. 2007; 38: 322-325https://doi.org/10.1016/j.arcmed.2006.11.009
        • Martina J.
        • Westerhof B.
        • van Groudever J.
        • Truijen J.
        • Kim Y.
        • Immink R.
        • Jobsis D.
        Noninvasive continuous arterial blood pressure monitoring with Nexfin.
        Anaesthesiology. 2012; 116: 1092-1103
        • Mathias C.J.
        • Bannister R.
        Autonomic failure A Textbook of Clinical Disorders of the Autonomic Nervous System.
        (Press 3. ed.) Oxford Univ., Oxford, UK2006
        • McDougall A.J.
        • McLeod J.G.
        Autonomic nervous system function in multiple sclerosis.
        J. Neurol. Sci. 2003; 215: 79-85https://doi.org/10.1016/S0022-510X(03)00205-3
        • Melkonian D.
        • Korner A.
        • Meares R.
        • Bahramali H.
        Increasing sensitivity in the measurement of heart rate variability: the method of non-stationary RR time–frequency analysis.
        Comput. Methods Prog. Biomed. 2012; 108: 53-67https://doi.org/10.1016/j.cmpb.2012.01.002
        • Monge-Argilés J.A.
        • Palacios-Ortega F.
        • Vila-Sobrino J.A.
        • Matias-Guiu J.
        Heart rate variability in multiple sclerosis during a stable phase.
        Acta Neurol. Scand. 1998; 97: 86-92
        • Nasseri K.
        • Tenvoorde B.J.
        • Adèr H.J.
        • Uitdehaag B.M.J.
        • Polman C.H.
        Longitudinal follow-up of cardiovascular reflex tests in multiple sclerosis.
        J. Neurol. Sci. 1998; 155: 50-54https://doi.org/10.1016/S0022-510X(97)00273-6
        • Nordenbo A.M.
        • Boesen F.
        • Andersen E.B.
        Cardiovascular autonomic function in multiple sclerosis.
        J. Auton. Nerv. Syst. 1991; 104: 129-134https://doi.org/10.1016/0165-1838(89)90110-0
        • Parati G.
        • Di Rienzo M.
        • Mancia G.
        How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life.
        J. Hypertens. 2000; 18: 7-19
      1. Penaz, J., 1973. Photoelectric measurement of blood pressure, volume and flow in the finger. Dig. In: Proceedings of the 10th International Conference Med. Biol. Eng. 104.

        • Pinna G.D.
        • Maestri R.
        New criteria for estimating baroreflex sensitivity using the transfer function method.
        Med. Biol. Eng. Comput. 2002; 40: 79-84
        • Pinter A.
        • Cseh D.
        • Sarkozi A.
        • Illigens B.M.
        • Siepmann T.
        • Pinterr A.
        • Cseh D.
        • Sarrkozi A.
        • Illigens B.M.
        • Siepmann T.
        Autonomic dysregulation in multiple sclerosis.
        Int. J. Mol. Sci. 2015; 16: 16920-16952https://doi.org/10.3390/ijms160816920
        • Polman C.H.
        • Reingold S.C.
        • Banwell B.
        • Clanet M.
        • Cohen J. a.
        • Filippi M.
        • Fujihara K.
        • Havrdova E.
        • Hutchinson M.
        • Kappos L.
        • Lublin F.D.
        • Montalban X.
        • O’Connor P.
        • Sandberg-Wollheim M.
        • Thompson A.J.
        • Waubant E.
        • Weinshenker B.
        • Wolinsky J.S.
        Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria.
        Ann. Neurol. 2011; 69: 292-302https://doi.org/10.1002/ana.22366
        • Racosta J.M.
        • Kimpinski K.
        Autonomic dysfunction, immune regulation, and multiple sclerosis.
        Clin. Auton. Res. 2016; 26: 23-31https://doi.org/10.1007/s10286-015-0325-7
        • Racosta J.M.
        • Sposato L. a.
        • Morrow S. a.
        • Cipriano L.
        • Kimpiski K.
        • Kremenchutzky M.
        Cardiovascular autonomic dysfunction in multiple sclerosis: a meta-analysis.
        Mult. Scler. Relat. Disord. 2015; 4: 104-111https://doi.org/10.1016/j.msard.2015.02.002
        • Rahman F.
        • Pechnik S.
        • Gross D.
        • Sewell L.
        • Goldstein D.S.
        Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation.
        Clin. Auton. Res. 2011; 21: 133-141https://doi.org/10.1007/s10286-010-0098-y
        • Riudavets M.A.
        • Colegial C.
        • Rubio A.
        • Fowler D.
        • Pardo C.
        • Troncoso J.C.
        Causes of unexpected death in patients with multiple sclerosis.
        Am. J. Forensic Med. Pathol. 2005; 26: 244-249https://doi.org/10.1097/01.paf.0000176277.15834.d3
        • Robbe H.W.J.
        • Mulder L.J.M.
        • Ruddel H.
        • Langewitz W.A.V.P.
        • B J.
        • Mulder G.
        Assessment of baroreceptor reflex sensitivity by means of spectral analysis techniques.
        Hypertension. 1987; 10: 538-544
        • Rolim L.C.
        • de Souza J.S.T.
        • Dib S.A.
        Tests for early diagnosis of cardiovascular autonomic neuropathy: critical analysis and relevance.
        Front. Endocrinol. (Lausanne). 2013; 4: 1-4https://doi.org/10.3389/fendo.2013.00173
        • Saari A.
        Autonomic Dysfunction in Multiple Sclerosis and Optic Neuritis.
        University of Oulu, 2010
        • Saari A.
        • Tolonen U.
        • Pääkkö E.
        • Suominen K.
        • Pyhtinen J.
        • Sotaniemi K.
        • Myllylä V.
        Cardiovascular autonomic dysfunction correlates with brain MRI lesion load in MS.
        Clin. Neurophysiol. 2004; 115: 1473-1478https://doi.org/10.1016/j.clinph.2004.01.012
        • Sanya E.O.
        • Tutaj M.
        • Brown C.M.
        • Goel N.
        • Neundörfer B.
        • Hilz M.J.
        Abnormal heart rate and blood pressure responses to baroreflex stimulation in multiple sclerosis patients.
        Clin. Auton. Res. 2005; 15: 213-218https://doi.org/10.1007/s10286-005-0274-7
        • Stauss H.M.
        Identification of blood pressure control mechanisms by power spectral analysis.
        Clin. Exp. Pharmacol. Physiol. 2007; 34: 362-368https://doi.org/10.1111/j.1440-1681.2007.04588.x
        • Sztajzel J.
        Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system.
        Swiss Med. Wkly. 2004; 134 (https://doi.org/2004/35/smw-10321): 514-522
      2. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use, 1996. Eur. Heart J. 17, 354–381. https://doi.org/10.1161/01.CIR.93.5.1043.

        • Tombul T.
        • Anlar O.
        • Tuncer M.
        • Huseyinoglu N.
        • Eryonucu B.
        Impaired heart rate variability as a marker of cardiovascular autonomic dysfunction in multiple sclerosis.
        Acta Neurol. Belg. 2011; 111: 116-120
        • Videira G.
        • Castro P.
        • Vieira B.
        • Filipe J.P.
        • Santos R.
        • Azevedo E.
        • Sá M.J.
        • Abreu P.
        Autonomic dysfunction in multiple sclerosis is better detected by heart rate variability and is not correlated with central autonomic network damage.
        J. Neurol. Sci. 2016; 367: 133-137https://doi.org/10.1016/j.jns.2016.05.049
        • Weston P.J.
        • James M.A.
        • Panerai R.B.
        • McNally P.G.
        • Potter J.F.
        • Thurston H.
        Evidence of defective cardiovascular regulation in insulin-dependent diabetic patients without clinical autonomic dysfunction.
        Diabetes Res. Clin. Pract. 1998; 42: 141-148
        • Ziegler D.
        • Laux G.
        • Dannehl K.
        • Spüler M.
        • Mühlen H.
        • Mayer P.
        • Gries F.A.
        Assessment of cardiovascular autonomic function: age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses.
        Diabet. Med. 1992; 9: 166-175