Advertisement
Review article| Volume 22, P77-82, May 2018

Download started.

Ok

Optical coherence tomography as a biomarker of neurodegeneration in multiple sclerosis: A review

  • Author Footnotes
    1 Address: Patricias Argentinas 111 5th A, CABA, Buenos Aires, Argentina. ZC: C1405BWB.
    Ricardo Alonso
    Correspondence
    Corresponding author.
    Footnotes
    1 Address: Patricias Argentinas 111 5th A, CABA, Buenos Aires, Argentina. ZC: C1405BWB.
    Affiliations
    Multiple Sclerosis Clinic, Department of Neurology, Ramos Mejía Hospital, Buenos Aires, Argentina
    Search for articles by this author
  • Dolores Gonzalez-Moron
    Affiliations
    Department of Neurology, Ramos Mejía Hospital, Buenos Aires, Argentina

    Department of Clinical Neurosciences, University of Lausanne, Lausanne, Switzerland
    Search for articles by this author
  • Orlando Garcea
    Affiliations
    Multiple Sclerosis Clinic, Department of Neurology, Ramos Mejía Hospital, Buenos Aires, Argentina
    Search for articles by this author
  • Author Footnotes
    1 Address: Patricias Argentinas 111 5th A, CABA, Buenos Aires, Argentina. ZC: C1405BWB.

      Highlights

      • The aim of this studyis to make a review of optical coherence tomography (OCT) as a biomarker of neurodegeneration and axonal loss in multiple sclerosis (MS).
      • The use of neurodegeneration biomarkers could be a useful tool for monitoring patients during clinical practice and a measure of outcome in clinical trials.
      • Retinal nerve fiber layer (RNFL) and macular ganglion cell layer (mGGL) are affected by MS and are related to clinical and paraclinical parameters.
      • The results of the research suggest that changes in the retina measured by OCT are a marker of overall axonal loss and neurodegeneration.

      Abstract

      Neurodegeneration is one the most important pathological factors which contributes to permanent disability in multiple sclerosis (MS). Optical coherence tomography (OCT) measurements of macular ganglion cell layer (mGCL) and retinal nerve fiber layer (RNFL) have been proposed as biomarkers of axonal damage in MS. The aim of this review is to describe the most relevant findings regarding OCT and axonal damage in MS. We have selected studies that describe retina impairment in MS patients, and those which quantitatively assess the relationship between OCT and physical disability, cognitive impairment and relationship between OCT and magnetic resonance imaging (MRI). Results show that there is a relationship between the degree of retinal layers reduction and physical or cognitive disability and degenerative changes in MRI.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ashtari F.
        • Emami P.
        • Akbari M.2
        Association between retinal nerve fiber layer thickness and magnetic resonance imaging findings and intelligence in patients with multiple sclerosis.
        Adv. Biomed. Res. 2015; 4: 223https://doi.org/10.4103/2277-9175.166646
        • Balk L.J.
        • Cruz-Herranz A.
        • Albrecht P.
        • et al.
        Timing of retinal neuronal and axonal loss in MS: a longitudinal OCT study.
        J. Neurol. 2016; 263: 1323-1331https://doi.org/10.1007/s00415-016-8127-y
        • Balk L.J.
        • Steenwijk M.D.
        • Tewarie P.
        • et al.
        Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis.
        J. Neurol. Neurosurg. Psychiatry. 2015; 86: 419-424https://doi.org/10.1136/jnnp-2014-308189
        • Barkhof F.
        • Calabresi P.A.
        • Miller D.H.
        • Reingold S.C.
        Imaging outcomes for neuroprotection and repair in multiple sclerosis trials.
        Nat. Rev. Neurol. 2009; 5: 256-266https://doi.org/10.1038/nrneurol.2009.41
        • Behbehani R.
        • Al-Hassan A.A.
        • Al-Khars A.
        • Sriraman D.
        • Alroughani R.
        Retinal nerve fiber layer thickness and neurologic disability in relapsing-remitting multiple sclerosis.
        J. Neurol. Sci. 2015; 359: 305-308https://doi.org/10.1016/j.jns.2015.11.017
        • Behbehani R.
        • Al-Hassan A.
        • Al-Salahat A.
        • Sriraman D.
        • Oakley J.D.
        • Alroughani R.
        Optical coherence tomography segmentation analysis in relapsing remitting versus progressive multiple sclerosis.
        PLoS One. 2017; 12: e0172120https://doi.org/10.1371/journal.pone.0172120
        • Bjartmar C.
        • Wujek J.R.
        • Trapp B.D.
        Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease.
        J. Neurol. Sci. 2003; 206: 165-171
        • Blumenthal E.Z.
        • Parikh R.S.
        • Pe'er J.
        Retinal nerve fibre layer imaging compared with histological measurements in a human eye.
        Eye. 2009; 23: 171-175https://doi.org/10.1038/sj.eye.6702942
        • Button J.
        • Al-Louzi O.
        • Lang A.
        Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: a retrospective study.
        Neurology. 2017; 88: 525-532https://doi.org/10.1212/WNL.0000000000003582
        • Britze J.
        • Pihl-Jensen G.
        • Lautrup Frederiksen J.
        Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis.
        J. Neurol. 2017; 264: 1837-1853https://doi.org/10.1007/s00415-017-8531
        • Calabresi P.A.
        Diagnosis and management of multiple sclerosis.
        Am. Fam. Physician. 2004; 70: 1935-1944
        • Cilingir V.
        • Batur M.
        • Bulut M.D.
        • et al.
        The association between retinal nerve fibre layer thickness and corpus callosum index in different clinical subtypes of multiple sclerosis.
        Neurol. Sci. 2017; 38: 1223-1232https://doi.org/10.1007/s10072-017-2947-0
        • Coric D.
        • Balk L.J.
        • Verrijp M.
        • et al.
        Cognitive impairment in patients with multiple sclerosis is associated with atrophy of the inner retinal layers.
        Mult. Scler. 2015; 1https://doi.org/10.1177/1352458517694090
        • Costello F.
        • Coupland S.
        • Hodge W.
        • et al.
        Quantifying axonal loss after optic neuritis with optical coherence tomography.
        Ann. Neurol. 2006; 2006: 963-969
        • De Stefano N.
        • Matthews P.M.
        • Fu L.
        • et al.
        Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study.
        Brain. 1998; 121: 1469-1477
        • De Stefano N.
        • Narayanan S.
        • Francis G.S.
        • et al.
        Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability.
        Arch. Neurol. 2001; 58: 65-70
        • Fisher J.B.
        • Jacobs D.A.
        • Markowitz C.
        • et al.
        Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis.
        Ophthalmology. 2006; 113: 324-334https://doi.org/10.1016/j.ophtha.2005.10.040
        • Fraussen J.
        • Vrolix K.
        • Martinez-Martinez P.
        • et al.
        B cell characterization and reactivity analysis in multiple sclerosis.
        Autoimmun. Rev. 2009; 8: 654-658https://doi.org/10.1016/j.autrev.2009.02.030
        • Frisen L.
        • Hoyt W.F.
        Insidious atrophy of retinal nerve fibers in multiple sclerosis: funduscopic identification in patients with and without visual complaints.
        Arch. Ophthalmol. 1974; 92: 91-97
        • Frohman E.M.
        • Racke M.K.
        • Raine C.S.
        Multiple sclerosis – the plaque and its pathogenesis.
        N. Engl. J. Med. 2006; 35: 942-955https://doi.org/10.1056/NEJMra052130
        • Gabilondo I.
        • Martinez-Lapiscina E.H.
        • Martinez-Heras E.
        • et al.
        Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis.
        Ann. Neurol. 2014; 75: 98-107https://doi.org/10.1002/ana.24030
        • Garcia-Martin E.
        • Ara J.R.
        • Martin J.
        Retinal and optic nerve degeneration in patients with multiple sclerosis followed up for 5 years.
        Ophthalmology. 2017; 124: 688-696https://doi.org/10.1016/j.ophtha.2017.01.005
        • Gelfand J.M.
        • Goodin D.S.
        • Boscardin W.J.
        • Nolan R.
        • Cuneo A.
        • Green A.J.
        Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes.
        PLoS One. 2012; 7: e36847https://doi.org/10.1371/journal.pone.0036847
        • Gordon-Lipkin E.
        • Chodkowski B.
        • Reich D.S.
        • et al.
        Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis.
        Neurology. 2007; 69: 1603-1609https://doi.org/10.1212/01.wnl.0000295995.46586.ae
        • Grazioli E.
        • Zivadinov R.
        • Weinstock-Guttman B.
        • et al.
        Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis.
        J. Neurol. Sci. 2007; 131: 277-287https://doi.org/10.1016/j.jns.2007.10.020
        • Green A.J.
        • McQuaid S.
        • Hauser S.L.
        • Allen I.V.
        • Lyness R.
        Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration.
        Brain. 2010; 133: 1591-1601https://doi.org/10.1093/brain/awq080
        • Hajee M.E.
        • March W.F.
        • Lazzaro D.R.
        • et al.
        Inner retinal layer thinning in Parkinson disease.
        Arch. Ophthalmol. 2009; 127: 737-741https://doi.org/10.1001/archophthalmol.2009.106
        • Hauser S.L.
        • Oksenberg J.R.
        The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration.
        Neuron. 2006; 52: 61-76https://doi.org/10.1016/j.neuron.2006.09.011
        • Hayton T.
        • Furby J.
        • Smith K.
        • et al.
        Longitudinal changes in magnetisation transfer ratio in secondary progressive multiple sclerosis: data from a randomised placebo controlled trial of lamotrigine.
        J. Neurol. 2012; 259: 505-514https://doi.org/10.1007/s00415-011-6212-9
        • Henderson A.P.D.
        • Trip S.A.
        • Schlottmann P.G.
        • et al.
        A preliminary longitudinal study of the retinal nerve fiber layer in progressive multiple sclerosis.
        J. Neurol. 2010; 257: 1083-1091https://doi.org/10.1007/s00415-010-5467-x
        • Huang-Link Y.M.
        • Fredrikson M.
        • Link H.
        Benign multiple sclerosis is associated with reduced thinning of the retinal nerve fiber and ganglion cell layers in non-optic-neuritis eyes.
        J. Clin. Neurol. 2015; 11: 241-247https://doi.org/10.3988/jcn.2015.11.3.241
        • Imitola J.
        • Chitnis T.
        • Khoury S.J.
        Insights into the molecular pathogenesis of progression in multiple sclerosis: potential implications for future therapies.
        Arch. Neurol. 2006; 63: 25-33https://doi.org/10.1001/archneur.63.1.25
        • Kapoor R.
        • Furby J.
        • Hayton T.
        • et al.
        Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial.
        Lancet Neurol. 2010; 9: 681-688https://doi.org/10.1016/S1474-4422(10)70131-9
        • Kerrison J.B.
        • Flynn T.
        • Green W.R.
        Retinal pathologic changes in multiple sclerosis.
        Retina. 1994; 14: 445-451
        • Lidster K.
        • Baker D.
        Optical coherence tomography detection of neurodegeneration in multiple sclerosis.
        CNS Neurol. Disord. Drug. Targets. 2012; 11: 518-527
        • Lu Y.
        • Li Z.
        • Zhang X.
        • et al.
        Retinal nerve fiber layer structure abnormalities in early Alzheimer's disease: evidence in optical coherence tomography.
        Neurosci. Lett. 2010; 480: 69-72https://doi.org/10.1016/j.neulet.2010.06.006
        • Martinez-Lapiscina E.H.
        • Arnow S.
        • Wilson J.A.
        Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study.
        Lancet Neurol. 2016; 15: 574-584https://doi.org/10.1016/S1474-4422(16)00068-5
        • Miller D.H.
        Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis.
        NeuroRx. 2004; 1: 284-294https://doi.org/10.1602/neurorx.1.2.284
        • Oberwahrenbrock T.
        • Schippling S.
        • Ringelstein M.
        • et al.
        Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography.
        Mult. Scler. Int. 2012; 2012: 530305https://doi.org/10.1155/2012/530305
        • Paquet C.
        • Boissonnot M.
        • Roger F.
        • Dighiero P.
        • Gil R.
        • Hugon J.
        Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer's disease.
        Neurosci. Lett. 2007; 420: 97-99https://doi.org/10.1016/j.neulet.2007.02.090
        • Parisi V.
        • Manni G.
        • Spadaro M.
        • et al.
        Correlation between morphological and functional retinal impairment in multiple sclerosis patients.
        Invest. Ophthalmol. Vis. Sci. 1999; 40: 2520-2527
        • Petzold A.
        • de Boer J.F.
        • Schippling S.
        • et al.
        Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis.
        Lancet Neurol. 2010; 9: 921-932https://doi.org/10.1016/S1474-4422(10)70168-X
        • Petzold A.
        • Balcer L.
        • Calabresi P.
        • et al.
        Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis.
        Lancet Neurol. 2017; 16: 797-812https://doi.org/10.1016/S1474-4422(17)30278-8
        • Pul R.
        • Saadat M.
        • Morbiducci F.
        Longitudinal time-domain optic coherence study of retinal nerve fiber layer in IFNβ-treated and untreated multiple sclerosis patients.
        Exp. Ther. Med. 2016; 12: 190-200https://doi.org/10.3892/etm.2016.3300
        • Pulicken M.
        • Gordon-Lipkin E.
        • Balcer L.J.
        • Frohman E.
        • Cutter G.
        • Calabresi P.A.
        Optical coherence tomography and disease subtype in multiple sclerosis.
        Neurology. 2007; 69: 2085-2092https://doi.org/10.1212/01.wnl.0000294876.49861.dc
        • Ratchford J.N.
        • Saidha S.
        • Sotirchos E.S.
        • et al.
        Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning.
        Neurology. 2013; 80: 47-54https://doi.org/10.1212/WNL.0b013e31827b1a1c
        • Saidha S.
        • Al-Louzi O.
        • Ratchford J.N.
        • et al.
        Optical coherence tomography reflects brain atrophy in MS: a four year study.
        Ann. Neurol. 2015; 78: 801-813https://doi.org/10.1002/ana.24487
        • Saidha S.
        • Shiv S.
        • Sotirchos E.S.
        • et al.
        Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis.
        JAMA Neurol. 2013; 70: 34-43https://doi.org/10.1001/jamaneurol.2013.573
        • Salapa H.E.
        • Lee S.
        • Shin Y.
        • Levin M.C.
        Contribution of the degeneration of the neuro-axonal unit to the pathogenesis of multiple sclerosis.
        Brain Sci. 2017; 7: 69https://doi.org/10.3390/brainsci7060069
        • Sedighi B.
        • Shafa M.A.
        • Abna Z.
        Association of cognitive deficits with optical coherence tomography changes in multiple sclerosis patients.
        J. Mult. Scler. 2014; 1: 117https://doi.org/10.4172/2376-0389.1000117
        • Sepulcre J.
        • Murie-Fernandez M.
        • Salinas-Alaman A.
        • Garcia-Layana A.
        • Bejarano B.
        • Villoslada P.
        Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS.
        Neurology. 2007; 68: 1488-1494https://doi.org/10.1212/01.wnl.0000260612.51849.ed
        • Saidha S.
        • Cetin H.
        • Young K.L.
        • et al.
        Pattern of gray matter volumes related to retinal thickness and its association with cognitive function in relapsing-remitting MS.
        Brain Behav. 2017; 7: e00614https://doi.org/10.1002/brb3.614
        • Scheel M.
        • Finke C.
        • Oberwahrenbrock T.
        • et al.
        Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: a combined optical coherence tomography and diffusion tensor imaging study.
        Mult. Scler. 2014; 20: 1904-1907https://doi.org/10.1177/1352458514535128
        • Sisto D.
        • Trojano M.
        • Vetrugno M.
        • Trabucco T.
        • Iliceto G.
        • Sborgi C.
        Subclinical Visual Involvement in Multiple Sclerosis: A Study by MRI, VEPs, Frequency-Doubling Perimetry, Standard Perimetry, and Contrast Sensitivity.
        Invest Ophthalmol Vis Sci. 2005; 46: 1264-1268
        • Stellmann J.P.
        • Cetin H.
        • Young K.L.
        • Hodecker S.
        • Pöttgen J.
        • Bittersohl D.
        • Hassenstein A.
        • et al.
        Pattern of gray matter volumes related to retinal thickness and its association with cognitive function in relapsing–remitting MS.
        Brain Behav. 2016; 7: e00614https://doi.org/10.1002/brb3.614
        • Syc S.B.
        • Saidha S.
        • Newsome S.D.
        • et al.
        Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis.
        Brain. 2012; 135 (PubMed: 22006982): 521-533
        • Syc S.B.
        • Warner C.V.
        • Hiremath G.S.
        • et al.
        Reproducibility of high-resolution optical coherence tomography in multiple sclerosis.
        Mult. Scler. 2010; 2010 (PubMed: 20530512): 829-839
        • Toledo J.
        • Sepulcre J.
        • Salinas Almaran A.
        • et al.
        Retinal nerve fiber layer atrophy is associated with physical and cognitive disability in multiple sclerosis.
        Mult. Scler. 2008; 14: 906-912https://doi.org/10.1177/1352458508090221
        • Trapp B.D.
        • Ransohoff R.
        • Rudick R.
        Axonal pathology in multiple sclerosis: relationship to neurologic disability.
        Curr. Opin. Neurol. 1999; 12: 295-302
        • Trip S.A.
        • Schlottmann P.G.
        • Jones S.J.
        • et al.
        Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis.
        Ann. Neurol. 2005; 58: 383-391https://doi.org/10.1002/ana.20575
        • Valenti D.A.
        Alzheimer's disease and glaucoma: imaging the biomarkers of neurodegenerative disease.
        Int. J. Alzheimer Dis. 2011; 2010: 793931https://doi.org/10.4061/2010/793931
        • Wegner C.
        • Esiri M.M.
        • Chance S.A.
        • Palace J.
        • Matthews P.M.
        Neocortical neuronal, synaptic, and glial loss in multiple sclerosis.
        Neurology. 2006; 67: 960-967https://doi.org/10.1212/01.wnl.0000237551.26858.39
        • Weinshenker B.C.
        Epidemiology of multiple sclerosis.
        Neurol. Clin. 1996; 142: 291-308
        • Young K.L.
        • Brandt A.U.
        • Petzold A.
        • et al.
        Loss of retinal nerve fibre layer axons indicates white but not grey matter damage in early multiple sclerosis.
        Eur. J. Neurol. 2013; 20: 803-811https://doi.org/10.1111/ene.12070
        • Yousefipour G.
        • Hashemzahi Z.
        • Yasemi M.
        • Jahani P.
        Findings of optical coherence tomography of retinal nerve fiber layer in two common types of multiple sclerosis.
        Acta Med. Iran. 2016; 54: 382-390