Advertisement
Research Article| Volume 21, P103-107, April 2018

Adult brain volume in multiple sclerosis: The impact of paediatric onset

      Highlights

      • Several differences characterize paediatric (POMS) compared to adult onset MS (AOMS).
      • Radiological characteristics are among the aspects that differentiating POMS from AOMS.
      • We found significant reduction in brain volumes in POMS compared to AOMS and healthy controls.
      • This feature appears to be independent from disease duration and other features.

      Abstract

      Background

      Paediatric onset multiple sclerosis (POMS) is associated with reduced brain and deep grey matter volume in comparison with that in healthy controls and individuals with adult onset multiple sclerosis (AOMS). The aim of our study was to evaluate the impact of POMS on adult brain volume with adjustment for other parameters, such as disease duration.

      Patients and methods

      We recruited 20 POMS and 40 AOMS patients and 20 healthy controls matched for age and sex. All study participants were adults at the time of inclusion in the study. All study subjects underwent brain magnetic resonance imaging (MRI) to evaluate whole brain, white matter, grey matter, cortical, and deep grey matter volumes. Clinical features, such as the Expanded Disability Status Scale (EDSS) score and disease duration, were also assessed.

      Results

      Brain (p = 0.01), grey matter (p = 0.01), and deep grey matter volume (p = 0.03) was significantly lower in POMS patients than in AOMS patients, while no differences were detected in the volume of white matter or cortical grey matter. A multiple linear regression analysis showed a relationship between brain volume (dependent variable) and the independent variables age (p < 0.000) and paediatric onset (p < 0.001), while other independent variables, including disease duration, sex, and disability, were not significantly different among groups. There were significant differences in thalamic volume among POMS and AOMS patients and healthy controls.

      Conclusion

      Our data support the previous findings that POMS patients have reduced brain and deep grey matter volume, particularly thalamic volume, compared with sex- and age-matched AOMS patients and healthy controls. These findings appear to be independent of disease duration and other clinical features.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Absinta M.
        • Rocca M.A.
        • Moiola L.
        • Ghezzi A.
        • Milani N.
        • Veggiotti P.
        • Comi G.
        • Filippi M.
        Brain macro- and microscopic damage in patients with paediatric MS.
        J. Neurol. Neurosurg. Psychiatry. 2010; 81: 1357-1362
        • Amato M.P.
        • Krupp L.B.
        • Charvet L.E.
        • Penner I.
        • Till C.
        Pediatric multiple sclerosis: cognition and mood.
        Neurology. 2016; 87 (Aug 30): S82-S87
        • Aubert-Broche B.
        • Fonov V.
        • Ghassemi R.
        • et al.
        Regional brain atrophy in children with multiple sclerosis.
        Neuroimage. 2011; 58: 409-415
        • Aubert-Broche B.
        • Fonov V.
        • Narayanan S.
        • et al.
        Onset of multiple sclerosis before adulthood leads to failure of ageexpected brain growth.
        Neurology. 2014; 83: 2140-2146
        • Banwell B.
        • Arnold D.L.
        • Tillema J.M.
        • Rocca M.A.
        • Filippi M.
        • Weinstock-Guttman B.
        • Zivadinov R.
        • Sormani M.P.
        MRI in the evaluation of pediatric multiple sclerosis.
        Neurology. 2016; (Aug 30)
        • Battaglini M.
        • Jenkinson M.
        • De Stefano N.
        Evaluating and reducing the impact of white matter lesions on brain volume measurements.
        Hum. Brain Mapp. 2011; 33: 2062-2071https://doi.org/10.1002/hbm.21344
        • De Stefano N.
        • Arnold D.L.
        Towards a better understanding of pseudoatrophy in the brain of multiple sclerosis patients.
        Mult. Scler. 2015; 21: 675-676
        • Giorgio A.
        • Zhang J.
        • Stromillo M.L.
        • Rossi F.
        • Battaglini M.
        • Nichelli L.
        • Mortilla M.
        • Portaccio E.
        • Hakiki B.
        • Amato M.P.
        • De Stefano N.
        Pronounced structural and functional damage in early adult pediatric-onset multiple sclerosis with no or minimal clinical disability.
        Front. Neurol. 2017; 8 (Nov 14): 608
        • Haines J.D.
        • Matilde Inglese I.
        • Casaccia P.
        Axonal damage in multiple sclerosis.
        Mt. Sinai J. Med. 2011; 78: 231-243
        • Houtchens M.K.
        • Benedict R.H.
        • Killiany R.
        • Sharma J.
        • Jaisani Z.
        • Singh B.
        • Weinstock-Guttman B.
        • Guttmann C.R.
        • Bakshi R.
        Thalamic atrophy and cognition in multiple sclerosis.
        Neurology. 2007; 69 (Sep 18): 1213-1223
        • Jenkinson M.
        • Smith S.M.
        A global optimisation method for robust affine registration of brain images.
        Med. Image Anal. 2001; 5: 143-156
        • Jenkinson M.
        • Bannister P.R.
        • Brady J.M.
        • Smith S.M.
        Improved optimisation for the robust and accurate linear registration and motion correction of brain images.
        NeuroImage. 2002; 17: 825-841
        • Kuhlmann T.
        • Lingfeld G.
        • Bitsch A.
        • Schuchardt J.
        • Bruck W.
        Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time.
        Brain. 2002; 125: 2202-2212
        • Melis M.
        • Cocco E.
        • Frau J.
        • Lorefice L.
        • Fenu G.
        • Coghe G.
        • Mura M.
        • Marrosu M.G.
        Post-natalizumab clinical and radiological findings in a cohort of multiple sclerosis patients: 12-month follow-up.
        Neurol. Sci. 2014; 35: 401-408
        • Mesaros S.
        • Rocca M.A.
        • Absinta M.
        • Ghezzi A.
        • Milani N.
        • Moiola L.
        • Veggiotti P.
        • Comi G.
        • Filippi M.
        Evidence of thalamic gray matter loss in pediatric multiple sclerosis.
        Neurology. 2008; 70 (Mar 25): 1107-1112
        • Pfeifenbring S.
        • Bunyan R.F.
        • Metz I.
        • et al.
        Extensive acute axonal damage in pediatric multiple sclerosis lesions.
        Ann. Neurol. 2015; 77: 655-667
        • Ruano L.
        • Branco M.
        • Portaccio E.
        • Goretti B.
        • Niccolai C.
        • Patti F.
        • Chisari C.
        • Gallo P.
        • Grossi P.
        • Ghezzi A.
        • Roscio M.
        • Mattioli F.
        • Stampatori C.
        • Simone M.
        • Viterbo R.G.
        • Amato M.P.
        Patients with paediatric-onset multiple sclerosis are at higher risk of cognitive impairment in adulthood: an Italian collaborative study.
        Mult. Scler. 2017; (Jun 1:135245851771734)
        • Sailer M.
        • Fischl B.
        • Salat D.
        • et al.
        Focal thinning of the cerebral cortex in multiple sclerosis.
        Brain. 2003; 126: 1734-1744
        • Simone I.L.
        • Carrara D.
        • Tortorella C.
        • et al.
        Course and prognosis in early-onset MS: comparison with adult-onset forms.
        Neurology. 2002; 59: 1922-1928
        • Smith S.M.
        Fast robust automated brain extraction.
        Hum. Brain Mapp. 2002; 17: 143-155https://doi.org/10.1002/hbm.10062
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.J.
        • Johansen-Berg H.
        • Bannister P.R.
        • De Luca M.
        • Drobnjak I.
        • Flitney D.E.
        • Niazy R.
        • Saunders J.
        • Vickers J.
        • Zhang Y.
        • De Stefano N.
        • Brady J.M.
        • Matthews P.M.
        Advances in functional and structural MR image analysis and implementation as FSL.
        NeuroImage. 2004; 23: 208-219
        • Waldman A.
        • Ness J.
        • Pohl D.
        • Simone I.L.
        • Anlar B.
        • Amato M.P.
        • Ghezzi A.
        Pediatric, multiple sclerosis: clinical features and outcome.
        Neurology. 2016; 87 (Review. PubMed PMID: 27572865): S74-81https://doi.org/10.1212/WNL.0000000000003028
      1. Wassmer, E., Chitnis, T., Pohl, D., Amato, M.P., Banwell, B., Ghezzi, A., Hintzen, R.Q., Krupp, L.B., Makhani, N., Rostásy, K., Tardieu, M., Tenembaum, S., Waldman, A., Waubant, E., Kornberg, A.J., 2016. International Pediatric MS Study Group Global Members Symposium report. Neurology, Aug 30, 87(9 Suppl. 2), p. S110-6. 〈http://dx.doi.org/10.1212/WNL.0000000000002880〉. Review. PubMed PMID: 27572855.

        • Waubant E.
        • Chabas D.
        • Okuda D.T.
        • Glenn O.
        • Mowry E.
        • Henry R.G.
        • Strober J.B.
        • Soares B.
        • Wintermark M.
        • Pelletier D.
        Difference in disease burden and activity in pediatric patients on brain magnetic resonance imaging at time of multiple sclerosis onset vs adults.
        Arch. Neurol. 2009; 66: 967-971
        • Zhang Y.
        • Brady M.
        • Smith S.
        Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.
        IEEE Trans. Med. Imaging. 2001; 20: 45-57https://doi.org/10.1109/42.906424