Advertisement
Research Article| Volume 21, P24-29, April 2018

Muscle carnosine in experimental autoimmune encephalomyelitis and multiple sclerosis

Published:February 11, 2018DOI:https://doi.org/10.1016/j.msard.2018.02.013

      Highlights

      • Muscle carnosine is related to contractile function and buffering of exercise–induced acidosis.
      • Muscle carnosine is substantially reduced in an animal MS model (EAE) and MS.
      • Exercise therapy does not restore reduced muscle carnosine in EAE.

      Abstract

      Background

      Muscle carnosine is related to contractile function (Ca++ handling) and buffering of exercise–induced acidosis. As these muscular functions are altered in Multiple Sclerosis (MS) it is relevant to understand muscle carnosine levels in MS.

      Methods

      Tibialis anterior muscle carnosine was measured in an animal MS model (EAE, experimental autoimmune encephalomyelitis, n = 40) and controls (CON, n = 40) before and after exercise training (EAEEX, CONEX, 10d, 1 h/d, 24 m/min treadmill running) or sedentary conditions (EAESED, CONSED). Human m. vastus lateralis carnosine of healthy controls (HC, n = 22) and MS patients (n = 24) was measured.

      Results

      EAE muscle carnosine levels were decreased (p < .0001) by ~ 40% to ~ 64% at 10d and 17d following EAE induction (respectively) regardless of exercise (p = .823). Similarly, human MS muscle carnosine levels were decreased (− 25%, p = .03).

      Conclusion

      Muscle carnosine concentrations in an animal MS model and MS patients are substantially reduced. In EAE exercise therapy does not restore this.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aldini G.
        • Orioli M.
        • Rossoni G.
        • Savi F.
        • Braidotti P.
        • Vistoli G.
        • Yeum K.J.
        • Negrisoli G.
        • Carini M.
        The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats.
        J. Cell. Mol. Med. 2011; 15: 1339-1354
        • Amorini A.M.
        • Nociti V.
        • Petzold A.
        • Gasperini C.
        • Quartuccio E.
        • Lazzarino G.
        • Di Pietro V.
        • Belli A.
        • Signoretti S.
        • Vagnozzi R.
        • Lazzarino G.
        • Tavazzi B.
        Serum lactate as a novel potential biomarker in multiple sclerosis.
        Biochim. Biophys. Acta. 2014; 1842: 1137-1143
        • Baba S.P.
        • Hoetker J.D.
        • Merchant M.
        • Klein J.B.
        • Cai J.
        • Barski O.A.
        • Conklin D.J.
        • Bhatnagar A.
        Role of aldose reductase in the metabolism and detoxification of carnosine-acrolein conjugates.
        J. Biol. Chem. 2013; 288: 28163-28179
        • Baguet A.
        • Everaert I.
        • De Naeyer H.
        • Reyngoudt H.
        • Stegen S.
        • Beeckman S.
        • Achten E.
        • Vanhee L.
        • Volkaert A.
        • Petrovic M.
        • Taes Y.
        • Derave W.
        Effects of sprint training combined with vegetarian or mixed diet on muscle carnosine content and buffering capacity.
        Eur. J. Appl. Physiol. 2011; 111: 2571-2580
        • Bellia F.
        • Vecchio G.
        • Rizzarelli E.
        Carnosinases, their substrates and diseases.
        Molecules. 2014; 19: 2299-2329
        • Blancquaert L.
        • Everaert I.
        • Derave W.
        Beta-alanine supplementation, muscle carnosine and exercise performance.
        Curr. Opin. Clin. Nutr. Metab. Care. 2015; 18: 63-70
        • Boldyrev A.A.
        Carnosine and Oxidative Stress in Cells and Tissues.
        Nova Science Publishers, New York2007
        • Boldyrev A.A.
        • Dupin A.M.
        • Bunin A.
        • Babizhaev M.A.
        • Severin S.E.
        The antioxidative properties of carnosine, a natural histidine containing dipeptide.
        Biochem. Int. 1987; 15: 1105-1113
        • Boldyrev A.A.
        • Aldini G.
        • Derave W.
        Physiology and pathophysiology of carnosine.
        Physiol. Rev. 2013; 93: 1803-1845
        • Campbell G.R.
        • Reeve A.K.
        • Ziabreva I.
        • Reynolds R.
        • Turnbull D.M.
        • Mahad D.J.
        No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis.
        Mult. Scler. 2013; 19: 1858-1866
        • Constantinescu C.S.
        • Farooqi N.
        • O'Brien K.
        • Gran B.
        Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS).
        Br. J. Pharmacol. 2011; 164: 1079-1106
        • Dalgas U.
        • Stenager E.
        • Ingemann-Hansen T.
        Multiple sclerosis and physical exercise: recommendations for the application of resistance-, endurance- and combined training.
        Mult. Scler. 2008; 14: 35-53
        • Dawson Jr., R.
        • Biasetti M.
        • Messina S.
        • Dominy J.
        The cytoprotective role of taurine in exercise-induced muscle injury.
        Amino Acids. 2002; 22: 309-324
        • Derave W.
        • Ozdemir M.S.
        • Harris R.C.
        • Pottier A.
        • Reyngoudt H.
        • Koppo K.
        • Wise J.A.
        • Achten E.
        beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters.
        J. Appl. Physiol. 2007; 103 (1985): 1736-1743
        • Derave W.
        • Everaert I.
        • Beeckman S.
        • Baguet A.
        Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training.
        Sports Med. 2010; 40: 247-263
        • Drozak J.
        • Piecuch M.
        • Poleszak O.
        • Kozlowski P.
        • Chrobok L.
        • Baelde H.J.
        • de Heer E.
        UPF0586 protein C9orf41 homolog is anserine-producing methyltransferase.
        J. Biol. Chem. 2015; 290: 17190-17205
        • Ellis T.
        • Motl R.W.
        Physical activity behavior change in persons with neurologic disorders: overview and examples from Parkinson disease and multiple sclerosis.
        J. Neurol. Phys. Ther. 2013; 37: 85-90
        • Everaert I.
        • Stegen S.
        • Vanheel B.
        • Taes Y.
        • Derave W.
        Effect of beta-alanine and carnosine supplementation on muscle contractility in mice.
        Med. Sci. Sports Exerc. 2013; 45: 43-51
        • Garner D.J.
        • Widrick J.J.
        Cross-bridge mechanisms of muscle weakness in multiple sclerosis.
        Muscle Nerve. 2003; 27: 456-464
        • de Haan A.
        • de Ruiter C.J.
        • van Der Woude L.H.
        • Jongen P.J.
        Contractile properties and fatigue of quadriceps muscles in multiple sclerosis.
        Muscle Nerve. 2000; 23: 1534-1541
        • Haider L.
        • Fischer M.T.
        • Frischer J.M.
        • Bauer J.
        • Hoftberger R.
        • Botond G.
        • Esterbauer H.
        • Binder C.J.
        • Witztum J.L.
        • Lassmann H.
        Oxidative damage in multiple sclerosis lesions.
        Brain. 2011; 134: 1914-1924
        • Hansen D.
        • Wens I.
        • Vandenabeele F.
        • Verboven K.
        • Eijnde B.O.
        Altered signaling for mitochondrial and myofibrillar biogenesis in skeletal muscles of patients with multiple sclerosis.
        Transl. Res. 2015; 166: 70-79
        • Kendrick I.P.
        • Harris R.C.
        • Kim H.J.
        • Kim C.K.
        • Dang V.H.
        • Lam T.Q.
        • Bui T.T.
        • Smith M.
        • Wise J.A.
        The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition.
        Amino Acids. 2008; 34: 547-554
        • Kendrick I.P.
        • Kim H.J.
        • Harris R.C.
        • Kim C.K.
        • Dang V.H.
        • Lam T.Q.
        • Bui T.T.
        • Wise J.A.
        The effect of 4 weeks beta-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres.
        Eur. J. Appl. Physiol. 2009; 106: 131-138
        • Kent-Braun J.A.
        • Sharma K.R.
        • Miller R.G.
        • Weiner M.W.
        Postexercise phosphocreatine resynthesis is slowed in multiple sclerosis.
        Muscle Nerve. 1994; 17: 835-841
        • Kent-Braun J.A.
        • Ng A.V.
        • Castro M.
        • Weiner M.W.
        • Gelinas D.
        • Dudley G.A.
        • Miller R.G.
        Strength, skeletal muscle composition, and enzyme activity in multiple sclerosis.
        J. Appl. Physiol. 1997; 83 (1985): 1998-2004
        • Keytsman C.
        • Eijnde B.
        • Hansen D.
        • Verboven K.
        • Wens I.
        Elevated cardiovasuclar risk factors in multiple sclerosis.
        Mult. Scler. Relat. Disord. 2017; : 220-223
        • Kjolhede T.
        • Vissing K.
        • Dalgas U.
        Multiple sclerosis and progressive resistance training: a systematic review.
        Mult. Scler. 2012; 18: 1215-1228
        • Kumleh H.H.
        • Riazi G.H.
        • Houshmand M.
        • Sanati M.H.
        • Gharagozli K.
        • Shafa M.
        Complex I deficiency in Persian multiple sclerosis patients.
        J. Neurol. Sci. 2006; 243: 65-69
        • Leung G.
        • Sun W.
        • Zheng L.
        • Brookes S.
        • Tully M.
        • Shi R.
        Anti-acrolein treatment improves behavioral outcome and alleviates myelin damage in experimental autoimmune encephalomyelitis mouse.
        Neuroscience. 2011; 173: 150-155
        • Mannion A.F.
        • Jakeman P.M.
        • Willan P.L.
        Effects of isokinetic training of the knee extensors on high-intensity exercise performance and skeletal muscle buffering.
        Eur. J. Appl. Physiol. Occup. Physiol. 1994; 68: 356-361
        • McCurdy K.
        • Langford G.
        Comparison of unilateral squat strength between the dominant and non-dominant leg in men and women.
        J. Sports Sci. Med. 2005; 4: 153-159
        • Motl R.W.
        • Gosney J.L.
        Effect of exercise training on quality of life in multiple sclerosis: a meta-analysis.
        Mult. Scler. 2008; 14: 129-135
        • Motl R.W.
        • Snook E.M.
        • Wynn D.R.
        • Vollmer T.
        Physical activity correlates with neurological impairment and disability in multiple sclerosis.
        J. Nerv. Ment. Dis. 2008; 196: 492-495
        • Ng A.V.
        • Kent-Braun J.A.
        Quantitation of lower physical activity in persons with multiple sclerosis.
        Med. Sci. Sports Exerc. 1997; 29: 517-523
        • Petajan J.H.
        • Gappmaier E.
        • White A.T.
        • Spencer M.K.
        • Mino L.
        • Hicks R.W.
        Impact of aerobic training on fitness and quality of life in multiple sclerosis.
        Ann. Neurol. 1996; 39: 432-441
        • Polfliet M.M.
        • van de Veerdonk F.
        • Dopp E.A.
        • van Kesteren-Hendrikx E.M.
        • van Rooijen N.
        • Dijkstra C.D.
        • van den Berg T.K.
        The role of perivascular and meningeal macrophages in experimental allergic encephalomyelitis.
        J. Neuroimmunol. 2002; 122: 1-8
        • Preston J.E.
        • Hipkiss A.R.
        • Himsworth D.T.
        • Romero I.A.
        • Abbott J.N.
        Toxic effects of beta-amyloid(25-35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine.
        Neurosci. Lett. 1998; 242: 105-108
        • Pugliatti M.
        • Rosati G.
        • Carton H.
        • Riise T.
        • Drulovic J.
        • Vecsei L.
        • Milanov I.
        The epidemiology of multiple sclerosis in Europe.
        Eur. J. Neurol. 2006; 13: 700-722
        • Regazzoni L.
        • de Courten B.
        • Garzon D.
        • Altomare A.
        • Marinello C.
        • Jakubova M.
        • Vallova S.
        • Krumpolec P.
        • Carini M.
        • Ukropec J.
        • Ukropcova B.
        • Aldini G.
        A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect.
        Sci. Rep. 2016; 6: 27224
        • Rice C.L.
        • Vollmer T.L.
        • Bigland-Ritchie B.
        Neuromuscular responses of patients with multiple sclerosis.
        Muscle Nerve. 1992; 15: 1123-1132
        • Sallis J.F.
        • Haskell W.L.
        • Fortmann S.P.
        • Wood P.D.
        • Vranizan K.M.
        Moderate-intensity physical activity and cardiovascular risk factors: the Stanford Five-City Project.
        Prev. Med. 1986; 15: 561-568
        • Savci S.
        • Inal-Ince D.
        • Arikan H.
        • Guclu-Gunduz A.
        • Cetisli-Korkmaz N.
        • Armutlu K.
        • Karabudak R.
        Six-minute walk distance as a measure of functional exercise capacity in multiple sclerosis.
        Disabil. Rehabil. 2005; 27: 1365-1371
        • Schulz K.H.
        • Gold S.M.
        • Witte J.
        • Bartsch K.
        • Lang U.E.
        • Hellweg R.
        • Reer R.
        • Braumann K.M.
        • Heesen C.
        Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis.
        J. Neurol. Sci. 2004; 225: 11-18
        • Sharma K.R.
        • Kent-Braun J.
        • Mynhier M.A.
        • Weiner M.W.
        • Miller R.G.
        Evidence of an abnormal intramuscular component of fatigue in multiple sclerosis.
        Muscle Nerve. 1995; 18: 1403-1411
        • Siqueira C.M.
        • Pelegrini F.R.
        • Fontana M.F.
        • Greve J.M.
        Isokinetic dynamometry of knee flexors and extensors: comparative study among non-athletes, jumper athletes and runner athletes.
        Rev. do Hosp. Das. Clin. 2002; 57: 19-24
        • Song B.C.
        • Joo N.S.
        • Aldini G.
        • Yeum K.J.
        Biological functions of histidine-dipeptides and metabolic syndrome.
        Nutr. Res. Pract. 2014; 8: 3-10
        • Stuerenburg H.J.
        • Kunze K.
        Concentrations of free carnosine (a putative membrane-protective antioxidant) in human muscle biopsies and rat muscles.
        Arch. Gerontol. Geriatr. 1999; 29: 107-113
        • Stuifbergen A.K.
        • Blozis S.A.
        • Harrison T.C.
        • Becker H.A.
        Exercise, functional limitations, and quality of life: a longitudinal study of persons with multiple sclerosis.
        Arch. Phys. Med. Rehabil. 2006; 87: 935-943
        • Suzuki Y.
        The effect of sprint training on skeletal muscle carnosine in humans.
        Int. J. Sport Health Sci. 2004; 2: 105-110
        • Tallon M.J.
        • Harris R.C.
        • Maffulli N.
        • Tarnopolsky M.A.
        Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects.
        Biogerontology. 2007; 8: 129-137
        • Tully M.
        • Shi R.
        New insights in the pathogenesis of multiple sclerosis--role of acrolein in neuronal and myelin damage.
        Int. J. Mol. Sci. 2013; 14: 20037-20047
        • van der Kamp W.
        • Maertens de Noordhout A.
        • Thompson P.D.
        • Rothwell J.C.
        • Day B.L.
        • Marsden C.D.
        Correlation of phasic muscle strength and corticomotoneuron conduction time in multiple sclerosis.
        Ann. Neurol. 1991; 29: 6-12
        • Wassif W.S.
        • Sherwood R.A.
        • Amir A.
        • Idowu B.
        • Summers B.
        • Leigh N.
        • Peters T.J.
        Serum carnosinase activities in central nervous system disorders.
        Clin. Chim. Acta Int. J. Clin. Chem. 1994; 225: 57-64
        • Wens I.
        • Dalgas U.
        • Vandenabeele F.
        • Krekels M.
        • Grevendonk L.
        • Eijnde B.O.
        Multiple sclerosis affects skeletal muscle characteristics.
        PLoS One. 2014; 9: e108158
        • Wens I.
        • Dalgas U.
        • Vandenabeele F.
        • Grevendonk L.
        • Verboven K.
        • Hansen D.
        • Eijnde B.O.
        High intensity exercise in multiple sclerosis: effects on muscle contractile characteristics and exercise capacity, a randomised controlled trial.
        PLoS One. 2015; 10: e0133697
        • Wens I.
        • Dalgas U.
        • Verboven K.
        • Kosten L.
        • Stevens A.
        • Hens N.
        • Eijnde B.O.
        Impact of high intensity exercise on muscle morphology in EAE rats.
        Physiol. Res. 2015; 64: 907-923