Advertisement
Research Article| Volume 21, P35-41, April 2018

Pharmacophore mapping based virtual screening, molecular docking and ADMET studies of ROCK II inhibitors

Published:February 12, 2018DOI:https://doi.org/10.1016/j.msard.2018.02.011

      Highlights

      • Pharmacophore mapping of ROCK 2 inhibitors was carried outout.
      • Virtual screening and design of ROCK 2 inhibitorsinhibitors.
      • Molecular docking analysis resulted in benzthiazole analogsanalogs.
      • In silico ADMET study was carried out to design potential ROCK 2 inhibitors.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bivalacqua T.J.
        • Champion H.C.
        • Usta M.F.
        • Cellek S.
        • Chitaley K.
        • Webb R.C.
        • et al.
        RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction.
        Proc. Natl. Acad. Sci. USA. 2004; 101: 9121-9126https://doi.org/10.1073/pnas.0400520101
        • Chan C.C.M.
        • Khodarahmi K.
        • Liu J.
        • Sutherland D.
        • Oschipok L.W.
        • Steeves J.D.
        • et al.
        Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury.
        Exp. Neurol. 2005; 196: 352-364https://doi.org/10.1016/j.expneurol.2005.08.011
        • Chen C.
        • Li Y.-H.
        • Zhang Q.
        • Yu J.-Z.
        • Zhao Y.-F.
        • Ma C.-G.
        • et al.
        Fasudil regulates T cell responses through polarization of BV-2 cells in mice experimental autoimmune encephalomyelitis.
        Nat. Publ. Gr. 2014; 35: 1428-1438https://doi.org/10.1038/aps.2014.68
        • Chen Y.T.
        • Bannister T.D.
        • Weiser A.
        • Griffin E.
        • Lin L.
        • Ruiz C.
        • et al.
        Chroman-3-amides as potent Rho kinase inhibitors.
        Bioorg. Med. Chem. Lett. 2008; 18: 6406-6409https://doi.org/10.1016/j.bmcl.2008.10.080
        • Chowdhury S.
        • Sessions E.H.
        • Pocas J.R.
        • Grant W.
        • Schröter T.
        • Lin L.
        • et al.
        Discovery and optimization of indoles and 7-azaindoles as Rho kinase (ROCK) inhibitors (part-I).
        Bioorg. Med. Chem. Lett. 2011; 21: 7107-7112https://doi.org/10.1016/j.bmcl.2011.09.083
        • Dong M.
        • Yan B.P.
        • Liao J.K.
        • Lam Y.-Y.
        • Yip G.W.K.
        • Yu C.-M.
        Rho-kinase inhibition: a novel therapeutic target for the treatment of cardiovascular diseases.
        Drug Discov. Today. 2010; 15: 622-629https://doi.org/10.1016/j.drudis.2010.06.011
        • Fang X.
        • Yin Y.
        • Chen Y.T.
        • Yao L.
        • Wang B.
        • Cameron M.D.
        • et al.
        Tetrahydroisoquinoline derivatives as highly selective and potent rho kinase inhibitors.
        J. Med. Chem. 2010; 53: 5727-5737https://doi.org/10.1021/jm100579r
        • Fei J.
        • Zhou L.
        • Liu T.
        • Tang X.Y.
        Pharmacophore modeling, virtual screening, and mo-lecular docking studies for discovery of novel Akt2 inhibitors.
        Int. J. Med. Sci. 2013; 10: 265-275https://doi.org/10.7150/ijms.5344
        • Feng Y.
        • Cameron M.D.
        • Frackowiak B.
        • Griffin E.
        • Lin L.
        • Ruiz C.
        • et al.
        Structure-activity relationships, and drug metabolism and pharmacokinetic properties for indazole piperazine and indazole piperidine inhibitors of ROCK-II.
        Bioorg. Med. Chem. Lett. 2007; 17: 2355-2360https://doi.org/10.1016/j.bmcl.2006.12.043
        • Feng Y.
        • Yin Y.
        • Weiser A.
        • Griffin E.
        • Cameron M.D.
        • Lin L.
        • et al.
        Discovery of substituted 4-(pyrazol-4-yl)-phenylbenzodioxane-2-carboxamides as potent and highly selective Rho kinase (ROCK-II) inhibitors.
        J. Med. Chem. 2008; 51: 6642-6645https://doi.org/10.1021/jm800986w
        • Gramatica P.
        Principles of QSAR models validation: internal and external.
        QSAR Comb. Sci. 2007; 26: 694-701https://doi.org/10.1002/qsar.200610151
      1. https://preadmet.bmdrc.kr/adme〉 (Accessed 19 April 2016).

      2. http://www.organic-chemistry.org/prog/peo/〉 (Accessed 20 May 2016).

        • Hirooka Y.
        • Shimokawa H.
        • Takeshita A.
        Rho-kinase, a potential therapeutic target for the treatment of hypertension.
        Drug News Perspect. 2004; 17: 523-527https://doi.org/10.1358/dnp.2004.17.8.863696
        • Ju X.L.
        • Hao Y.L.
        • Pei J.F.
        • Ozoe Y.
        Investigation of structural requirements for inhibitory activity at the rat and housefly picrotoxinin binding sites in ionotropic GABA receptors using DISCOtech and CoMFA.
        Chemosphere. 2007; 69: 864-871https://doi.org/10.1016/j.chemosphere.2007.06.040
        • Kjoller L.
        • Hall A.
        Signaling to Rho GTPases.
        Exp. Cell Res. 1999; 253: 166-179https://doi.org/10.1006/excr.1999.4674
        • LoGrasso P.V.
        • Feng Y.
        Rho kinase (ROCK) inhibitors and their application to inflammatory disorders.
        Curr. Top. Med. Chem. 2009; 9: 704-723https://doi.org/10.2174/156802609789044452
        • Luo W.
        • Liu C.
        • Yang Q.
        • Yu Q.
        • Wang T.
        New Angle of View on the Role of Rho / Rho Kinase Pathway in Human Diseases.
        13. 2014: 378-395
        • Nakajima M.
        • Hayashi K.
        • Katayama K. ichi
        • Amano Y.
        • Egi Y.
        • Uehata M.
        • et al.
        Wf-536 prevents tumor metastasis by inhibiting both tumor motility and angiogenic actions.
        Eur. J. Pharmacol. 2003; 459: 113-120https://doi.org/10.1016/S0014-2999(02)02869-8
        • Nakajima M.
        • Hayashi K.
        • Egi Y.
        • Katayama K.I.
        • Amano Y.
        • Uehata M.
        • et al.
        Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma.
        Cancer Chemother. Pharmacol. 2003; 52: 319-324https://doi.org/10.1007/s00280-003-0641-9
        • Patel Y.
        • Gillet V.J.
        • Bravi G.
        • Leach A.R.
        A comparison of the pharmacophore identification programs: catalyst, DISCO and GASP.
        J. Comput. Aided Mol. Des. 2002; 16: 653-681https://doi.org/10.1023/A:1021954728347
        • Satoh S. ichi
        • Toshima Y.
        • Ikegaki I.
        • Iwasaki M.
        • Asano T.
        Wide therapeutic time window for fasudil neuroprotection against ischemia-induced delayed neuronal death in gerbils.
        Brain Res. 2007; 1128: 175-180https://doi.org/10.1016/j.brainres.2006.10.027
        • Schirok H.
        • Kast R.
        • Figueroa-Pérez S.
        • Bennabi S.
        • Gnoth M.J.
        • Feurer A.
        • et al.
        Design and synthesis of potent and selective azaindole-based Rho kinase (ROCK) inhibitors.
        ChemMedChem. 2008; 3: 1893-1904https://doi.org/10.1002/cmdc.200800211
        • Schirok H.
        • Kast R.
        • Figueroa-Pérez S.
        • Bennabi S.
        • Gnoth M.J.
        • Feurer A.
        • et al.
        Design and synthesis of potent and selective azaindole-based Rho kinase (ROCK) inhibitors.
        ChemMedChem. 2008; 3: 1893-1904https://doi.org/10.1002/cmdc.200800211
        • Sessions E.H.
        • Yin Y.
        • Bannister T.D.
        • Weiser A.
        • Griffin E.
        • Pocas J.
        • et al.
        Benzimidazole- and benzoxazole-based inhibitors of Rho kinase.
        Bioorg. Med. Chem. Lett. 2008; 18: 6390-6393https://doi.org/10.1016/j.bmcl.2008.10.095
        • Takami A.
        • Iwakubo M.
        • Okada Y.
        • Kawata T.
        • Odai H.
        • Takahashi N.
        • et al.
        Design and synthesis of Rho kinase inhibitors (I).
        Bioorg. Med. Chem. 2004; 12: 2115-2137https://doi.org/10.1016/j.bmc.2004.02.025
        • Thangapandian S.
        • John S.
        • Sakkiah S.
        • Lee K.W.
        Potential virtual lead identification in the discovery of renin inhibitors: application of ligand and structure-based pharmacophore modeling approaches.
        Eur. J. Med. Chem. 2011; 46: 2469-2476https://doi.org/10.1016/j.ejmech.2011.03.035
        • Uehata M.
        • Ishizaki T.
        • Satoh H.
        • Ono T.
        • Kawahara T.
        • Morishita T.
        • et al.
        Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension.
        Nature. 1997; 389: 990-994https://doi.org/10.1038/40187
      3. www.nationalmssociety.org〉 (Accessed 22 May 2016).

        • Waki M.
        • Yoshida Y.
        • Oka T.
        • Azuma M.
        Reduction of intraocular pressure by topical administration of an inhibitor of the Rho-associated protein kinase.
        Curr. Eye Res. 2001; 22: 470-474https://doi.org/10.1076/ceyr.22.6.470.5489
        • Yin Y.
        • Lin L.
        • Ruiz C.
        • Cameron M.D.
        • Pocas J.
        • Grant W.
        • et al.
        Benzothiazoles as Rho-associated kinase (ROCK-II) inhibitors.
        Bioorg. Med. Chem. Lett. 2009; 19: 6686-6690https://doi.org/10.1016/j.bmcl.2009.09.115
        • Yin Y.
        • Cameron M.D.
        • Lin L.
        • Khan S.
        • Schröter T.
        • Grant W.
        • et al.
        Discovery of potent and selective urea-based ROCK inhibitors and their effects on intraocular pressure in rats.
        ACS Med. Chem. Lett. 2010; 1: 175-179https://doi.org/10.1021/ml1000382