Highlights
- •CI patients had more disability and psychological distress than non-CI MS patients.
- •Third ventricle width, corpus callosum index and lesion volume predicted CI in MS.
- •None of the 3D MRI subcortical structures predicted cognitive function in MS.
Abstract
Background
Methods
Results
Conclusions
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Multiple Sclerosis and Related DisordersReferences
- Measurement of brain and spinal cord atrophy by magnetic resonance imaging as a tool to monitor multiple sclerosis.J. Neuroimaging Off. J. Am. Soc. Neuroimaging. 2005; 15: 30S-45Shttps://doi.org/10.1177/1051228405283901
- Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis.J. Neurol. 2012; 259: 139-146https://doi.org/10.1007/s00415-011-6147-1
- Spatiotemporal distribution pattern of white matter lesion volumes and their association with regional grey matter volume reductions in relapsing-remitting multiple sclerosis.Hum. Brain Mapp. 2010; 31: 1542-1555https://doi.org/10.1002/hbm.20951
- Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients.Mult. Scler. 2013; 19: 1478-1484https://doi.org/10.1177/1352458513478675
- Neocortical atrophy, third ventricular width, and cognitive dysfunction in multiple sclerosis.Arch. Neurol. 2006; 63: 1301-1306https://doi.org/10.1001/archneur.63.9.1301
- Callosal atrophy in multiple sclerosis is related to cognitive speed.Acta Neurol. Scand. 2013; 127: 281-289https://doi.org/10.1111/ane.12006
- Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients.Mult. Scler. 2016; 22: 1327-1336https://doi.org/10.1177/1352458515616204
- Bicaudate ratio as a magnetic resonance imaging marker of brain atrophy in multiple sclerosis.Arch. Neurol. 2002; 59: 275-280
- Validation of linear cerebral atrophy markers in multiple sclerosis.J. Clin. Neurosci. 2008; 15: 130-137https://doi.org/10.1016/j.jocn.2007.02.089
- Cognitive impairment in multiple sclerosis.Lancet Neurol. 2008; 7: 1139-1151https://doi.org/10.1016/S1474-4422(08)70259-X
- Multi-parametric structural magnetic resonance imaging in relation to cognitive dysfunction in long-standing multiple sclerosis.Mult. Scler. J. 2016; 22: 608-619https://doi.org/10.1177/1352458515596598
- Hippocampal and deep gray matter nuclei atrophy is relevant for explaining cognitive impairment in MS: a multicenter study.Am. J. Neuroradiol. 2016; https://doi.org/10.3174/ajnr.A4952
- Evidence of early cortical atrophy in MS: relevance to white matter changes and disability.Neurology. 2003; 60: 1157-1162
- Measuring brain atrophy in multiple sclerosis.J. Neuroimaging Off. J. Am. Soc. Neuroimaging. 2007; 17: 10S-15Shttps://doi.org/10.1111/j.1552-6569.2007.00130.x
- Deep grey matter MRI abnormalities and cognitive function in relapsing-remitting multiple sclerosis.Psychiatry Res. 2015; 234: 352-361https://doi.org/10.1016/j.pscychresns.2015.10.004
- How reliable is the classification of cognitive impairment across different criteria in early and late stages of multiple sclerosis?.J. Neurol. Sci. 2014; 343: 91-99https://doi.org/10.1016/j.jns.2014.05.042
- Pain, cognition and quality of life associate with structural measures of brain volume loss in multiple sclerosis.NeuroRehabilitation. 2016; https://doi.org/10.3233/NRE-161384
- Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner.NeuroImage Clin. 2016; 10: 89-95https://doi.org/10.1016/j.nicl.2015.11.008
- Impact of cognitive impairment on coping strategies in multiple sclerosis.Clin. Neurol. Neurosurg. 2010; 112: 127-130https://doi.org/10.1016/j.clineuro.2009.10.019
- Cognitive impairment and magnetic resonance imaging correlates in primary progressive multiple sclerosis.Acta Neurol. Scand. 2017; 136: 109-115https://doi.org/10.1111/ane.12702
- Quantification and clinical relevance of brain atrophy in multiple sclerosis: a review.J. Neurol. 2009; 256: 1397-1412https://doi.org/10.1007/s00415-009-5108-4
- Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis.JAMA Neurol. 2015; 72: 1004-1012https://doi.org/10.1001/jamaneurol.2015.1241
- Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions.Neurology. 2013; 80: 1025-1032https://doi.org/10.1212/WNL.0b013e31828726cc
- Memory impairment in multiple sclerosis: relevance of hippocampal activation and hippocampal connectivity.Mult. Scler. 2015; 21: 1705-1712https://doi.org/10.1177/1352458514567727
- A global optimisation method for robust affine registration of brain images.Med. Image Anal. 2001; 5: 143-156
- Gray matter correlates of cognitive performance differ between relapsing-remitting and primary-progressive multiple sclerosis.PloS One. 2015; 10: e0129380https://doi.org/10.1371/journal.pone.0129380
- Electronic visual analogue scales for pain, fatigue, anxiety and quality of life in people with multiple sclerosis using smartphone and tablet: a reliability and feasibility study.Clin. Rehabil. 2017; 31: 1215-1225https://doi.org/10.1177/0269215517692641
- Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).Neurology. 1983; 33: 1444-1452
- Recommendations for a brief international cognitive assessment for multiple sclerosis (BICAMS).Mult. Scler. 2012; 18: 891-898https://doi.org/10.1177/1352458511431076
- Brain atrophy and cognitive impairment in multiple sclerosis: a review.J. Neurol. 2007; 254: II43-48https://doi.org/10.1007/s00415-007-2011-8
- Cognitive slowing in multiple sclerosis is strongly associated with brain volume reduction.Mult. Scler. 2006; 12: 760-768
Lyrakos, G.N., Arvaniti, C., Smyrnioti, M., Kostopanagiotou, G., 2011. P03-561 - Translation and validation study of the depression anxiety stress scale in the greek general population and in a psychiatric patient’s sample. Eur. Psychiatry, Abstracts of the 19th European Congress of Psychiatry 26, 1731. 〈http://dx.doi.org/10.1016/S0924-9338(11)73435-6〉.
- Impairment of visuospatial/visuoconstructional skills in multiple sclerosis patients: the correlation with regional lesion load and subcortical atrophy.Neurologia. 2016; 31: 169-175https://doi.org/10.1016/j.nrl.2015.06.003
- A longitudinal observational study of brain atrophy rate reflecting four decades of multiple sclerosis: a comparison of serial 1D, 2D, and volumetric measurements from MRI images.Neuroradiology. 2010; 52: 109-117https://doi.org/10.1007/s00234-009-0593-9
- Characteristics of neurological and cognitive status in patients with multiple sclerosis in relation to the location and volumes of demyelination foci and the severity of brain atrophy.Neurosci. Behav. Physiol. 2009; 39: 35-38https://doi.org/10.1007/s11055-008-9086-2
- Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression.Mult. Scler. 2016; 22: 659-667https://doi.org/10.1177/1352458515599075
- Coping strategies in multiple sclerosis patients with frontal cognitive disorders.Eur. Neurol. 2012; 68: 84-88https://doi.org/10.1159/000337905
- Thalamic atrophy predicts cognitive impairment in relapsing remitting multiple sclerosis. Effect on instrumental activities of daily living and employment status.J. Neurol. Sci. 2015; 358: 236-242https://doi.org/10.1016/j.jns.2015.09.001
- A Bayesian model of shape and appearance for subcortical brain segmentation.NeuroImage. 2011; 56: 907-922https://doi.org/10.1016/j.neuroimage.2011.02.046
- Predictive value of different conventional and non-conventional MRI-parameters for specific domains of cognitive function in multiple sclerosis.NeuroImage Clin. 2015; 7: 715-720https://doi.org/10.1016/j.nicl.2015.02.023
- Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria.Ann. Neurol. 2011; 69: 292-302https://doi.org/10.1002/ana.22366
- Validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in Greek population with multiple sclerosis.Mult. Scler. Relat. Disord. 2016; 9: 68-72https://doi.org/10.1016/j.msard.2016.06.011
- What drives MRI-measured cortical atrophy in multiple sclerosis?.Mult. Scler. 2015; 21: 1280-1290https://doi.org/10.1177/1352458514562440
- Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: a Multicenter Study.Hum. Brain Mapp. 2016; 37: 1627-1644https://doi.org/10.1002/hbm.23125
- A longitudinal analysis of cognitive dysfunction, coping, and depression in multiple sclerosis.Neuropsychology. 2009; 23: 581-591https://doi.org/10.1037/a0016064
- Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis.Lancet Neurol. 2015; 14: 302-317https://doi.org/10.1016/S1474-4422(14)70250-9
- Brain atrophy in multiple sclerosis: therapeutic, cognitive and clinical impact.Arq. Neuropsiquiatr. 2016; 74: 235-243https://doi.org/10.1590/0004-282X20160015
- Relevance of brain lesion location to cognition in relapsing multiple sclerosis.PloS One. 2012; 7: e44826https://doi.org/10.1371/journal.pone.0044826
- MRI markers of destructive pathology in multiple sclerosis-related cognitive dysfunction.J. Neurol. Sci. 2006; 245: 111-116https://doi.org/10.1016/j.jns.2005.07.014
- Cognitive impairment and memory disorders in relapsing–remitting multiple sclerosis: the role of white matter, gray matter and hippocampus.J. Neurol. 2015; 262: 1691-1697https://doi.org/10.1007/s00415-015-7763-y
- Brain atrophy as a marker of cognitive impairment in mildly disabling relapsing-remitting multiple sclerosis.Eur. J. Neurol. 2008; 15: 1091-1099https://doi.org/10.1111/j.1468-1331.2008.02259.x
- Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis.Neurology. 2006; 66: 685-692https://doi.org/10.1212/01.wnl.0000201238.93586.d9
- Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients.PloS One. 2013; 8: e63250https://doi.org/10.1371/journal.pone.0063250
- Fast robust automated brain extraction.Hum. Brain Mapp. 2002; 17: 143-155https://doi.org/10.1002/hbm.10062
- Advances in functional and structural MR image analysis and implementation as FSL.NeuroImage. 2004; 23: S208-219https://doi.org/10.1016/j.neuroimage.2004.07.051
- Cognitive decline in multiple sclerosis: impact of topographic lesion distribution on differential cognitive deficit patterns.Mult. Scler. 2009; 15: 1164-1174https://doi.org/10.1177/1352458509106853
- Cognitive deficits in multiple sclerosis patients with cerebellar symptoms.Mult. Scler. 2009; 15: 854-859https://doi.org/10.1177/1352458509104589
- Relationship between brain volume loss and cognitive outcomes among patients with multiple sclerosis: a systematic literature review.Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2016; 37: 165-179https://doi.org/10.1007/s10072-015-2400-1
- The relationship between total and regional corpus callosum atrophy, cognitive impairment and fatigue in multiple sclerosis patients.Mult. Scler. 2014; 20: 356-364https://doi.org/10.1177/1352458513496880
- Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.IEEE Trans. Med. Imaging. 2001; 20: 45-57https://doi.org/10.1109/42.906424