Advertisement
Research Article| Volume 21, P1-8, April 2018

Structural MRI correlates of cognitive function in multiple sclerosis

  • Artemios Artemiadis
    Correspondence
    Corresponding author at: Department of Neurology, Army Share Fund Hospital (NIMTS), Monis Petraki 10-12, GR-11521 Athens, Greece.
    Affiliations
    1st Department of Neurology, Aeginition Hospital, Faculty of Medicine, National Kapodistrian University of Athens, Vas. Sofias Ave. 72-74, GR-11528 Athens, Greece

    Department of Neurology, Army Share Fund Hospital (NIMTS), Monis Petraki 10-12, GR-11521 Athens, Greece
    Search for articles by this author
  • Maria Anagnostouli
    Affiliations
    1st Department of Neurology, Aeginition Hospital, Faculty of Medicine, National Kapodistrian University of Athens, Vas. Sofias Ave. 72-74, GR-11528 Athens, Greece
    Search for articles by this author
  • Ioannis Zalonis
    Affiliations
    1st Department of Neurology, Aeginition Hospital, Faculty of Medicine, National Kapodistrian University of Athens, Vas. Sofias Ave. 72-74, GR-11528 Athens, Greece
    Search for articles by this author
  • Konstantinos Chairopoulos
    Affiliations
    Department of Neurology, Army Share Fund Hospital (NIMTS), Monis Petraki 10-12, GR-11521 Athens, Greece
    Search for articles by this author
  • Nikos Triantafyllou
    Affiliations
    1st Department of Neurology, Aeginition Hospital, Faculty of Medicine, National Kapodistrian University of Athens, Vas. Sofias Ave. 72-74, GR-11528 Athens, Greece
    Search for articles by this author
Published:February 06, 2018DOI:https://doi.org/10.1016/j.msard.2018.02.003

      Highlights

      • CI patients had more disability and psychological distress than non-CI MS patients.
      • Third ventricle width, corpus callosum index and lesion volume predicted CI in MS.
      • None of the 3D MRI subcortical structures predicted cognitive function in MS.

      Abstract

      Background

      Cognitive impairment (CI) has been associated with numerous magnetic resonance imaging (MRI) indices in multiple sclerosis (MS) patients. In this study we investigated the association of a large set of 2D and 3D MRI markers with cognitive function in MS.

      Methods

      A sample of 61 RRMS patients (mean age 41.8 ± 10.6 years old, 44 women, mean disease duration 137.9 ± 83.9 months) along with 51 age and gender matched healthy controls was used in this cross-sectional study. Neuropsychological and other tests, along with a large set of 2D/3D MRI evaluations were made.

      Results

      44.3% of patients had CI. CI patients had more disability, physical fatigue than non-CI patients and more psychological distress than non-CI patients and HCs. Also, CI patients had significantly larger third ventricle width and volume, smaller coprus callosum index and larger lesion volume than non-CI patients. These MRI markers also significantly predicted cognitive scores after adjusting for age and education, explaining about 30.6% of the variance of the total cognitive score.

      Conclusions

      Selected linear and volumetric MRI indices predict cognitive function in MS. Future studies should expand these results by exploring longitudinal changes and producing normative data.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bakshi R.
        • Dandamudi V.S.R.
        • Neema M.
        • De C.
        • Bermel R.A.
        Measurement of brain and spinal cord atrophy by magnetic resonance imaging as a tool to monitor multiple sclerosis.
        J. Neuroimaging Off. J. Am. Soc. Neuroimaging. 2005; 15: 30S-45Shttps://doi.org/10.1177/1051228405283901
        • Batista S.
        • Zivadinov R.
        • Hoogs M.
        • Bergsland N.
        • Heininen-Brown M.
        • Dwyer M.G.
        • Weinstock-Guttman B.
        • Benedict R.H.B.
        Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis.
        J. Neurol. 2012; 259: 139-146https://doi.org/10.1007/s00415-011-6147-1
        • Bendfeldt K.
        • Blumhagen J.O.
        • Egger H.
        • Loetscher P.
        • Denier N.
        • Kuster P.
        • Traud S.
        • Mueller-Lenke N.
        • Naegelin Y.
        • Gass A.
        • Hirsch J.
        • Kappos L.
        • Nichols T.E.
        • Radue E.-W.
        • Borgwardt S.J.
        Spatiotemporal distribution pattern of white matter lesion volumes and their association with regional grey matter volume reductions in relapsing-remitting multiple sclerosis.
        Hum. Brain Mapp. 2010; 31: 1542-1555https://doi.org/10.1002/hbm.20951
        • Benedict R.H.
        • Hulst H.E.
        • Bergsland N.
        • Schoonheim M.M.
        • Dwyer M.G.
        • Weinstock-Guttman B.
        • Geurts J.J.
        • Zivadinov R.
        Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients.
        Mult. Scler. 2013; 19: 1478-1484https://doi.org/10.1177/1352458513478675
        • Benedict R.H.B.
        • Bruce J.M.
        • Dwyer M.G.
        • Abdelrahman N.
        • Hussein S.
        • Weinstock-Guttman B.
        • Garg N.
        • Munschauer F.
        • Zivadinov R.
        Neocortical atrophy, third ventricular width, and cognitive dysfunction in multiple sclerosis.
        Arch. Neurol. 2006; 63: 1301-1306https://doi.org/10.1001/archneur.63.9.1301
        • Bergendal G.
        • Martola J.
        • Stawiarz L.
        • Kristoffersen-Wiberg M.
        • Fredrikson S.
        • Almkvist O.
        Callosal atrophy in multiple sclerosis is related to cognitive speed.
        Acta Neurol. Scand. 2013; 127: 281-289https://doi.org/10.1111/ane.12006
        • Bergsland N.
        • Zivadinov R.
        • Dwyer M.G.
        • Weinstock-Guttman B.
        • Benedict R.H.
        Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients.
        Mult. Scler. 2016; 22: 1327-1336https://doi.org/10.1177/1352458515616204
        • Bermel R.A.
        • Bakshi R.
        • Tjoa C.
        • Puli S.R.
        • Jacobs L.
        Bicaudate ratio as a magnetic resonance imaging marker of brain atrophy in multiple sclerosis.
        Arch. Neurol. 2002; 59: 275-280
        • Butzkueven H.
        • Kolbe S.C.
        • Jolley D.J.
        • Brown J.Y.
        • Cook M.J.
        • van der Mei I.A.F.
        • Groom P.S.
        • Carey J.
        • Eckholdt J.
        • Rubio J.P.
        • Taylor B.V.
        • Mitchell P.J.
        • Egan G.F.
        • Kilpatrick T.J.
        Validation of linear cerebral atrophy markers in multiple sclerosis.
        J. Clin. Neurosci. 2008; 15: 130-137https://doi.org/10.1016/j.jocn.2007.02.089
        • Chiaravalloti N.D.
        • DeLuca J.
        Cognitive impairment in multiple sclerosis.
        Lancet Neurol. 2008; 7: 1139-1151https://doi.org/10.1016/S1474-4422(08)70259-X
        • Daams M.
        • Steenwijk M.D.
        • Schoonheim M.M.
        • Wattjes M.P.
        • Balk L.J.
        • Tewarie P.K.
        • Killestein J.
        • Uitdehaag B.M.
        • Geurts J.J.
        • Barkhof F.
        Multi-parametric structural magnetic resonance imaging in relation to cognitive dysfunction in long-standing multiple sclerosis.
        Mult. Scler. J. 2016; 22: 608-619https://doi.org/10.1177/1352458515596598
        • Damjanovic D.
        • Valsasina P.
        • Rocca M.A.
        • Stromillo M.L.
        • Gallo A.
        • Enzinger C.
        • Hulst H.E.
        • Rovira A.
        • Muhlert N.
        • Stefano N.D.
        • Bisecco A.
        • Fazekas F.
        • Arévalo M.J.
        • Yousry T.A.
        • Filippi M.
        Hippocampal and deep gray matter nuclei atrophy is relevant for explaining cognitive impairment in MS: a multicenter study.
        Am. J. Neuroradiol. 2016; https://doi.org/10.3174/ajnr.A4952
        • De Stefano N.
        • Matthews P.M.
        • Filippi M.
        • Agosta F.
        • De Luca M.
        • Bartolozzi M.L.
        • Guidi L.
        • Ghezzi A.
        • Montanari E.
        • Cifelli A.
        • Federico A.
        • Smith S.M.
        Evidence of early cortical atrophy in MS: relevance to white matter changes and disability.
        Neurology. 2003; 60: 1157-1162
        • De Stefano N.
        • Battaglini M.
        • Smith S.M.
        Measuring brain atrophy in multiple sclerosis.
        J. Neuroimaging Off. J. Am. Soc. Neuroimaging. 2007; 17: 10S-15Shttps://doi.org/10.1111/j.1552-6569.2007.00130.x
        • Debernard L.
        • Melzer T.R.
        • Alla S.
        • Eagle J.
        • Van Stockum S.
        • Graham C.
        • Osborne J.R.
        • Dalrymple-Alford J.C.
        • Miller D.H.
        • Mason D.F.
        Deep grey matter MRI abnormalities and cognitive function in relapsing-remitting multiple sclerosis.
        Psychiatry Res. 2015; 234: 352-361https://doi.org/10.1016/j.pscychresns.2015.10.004
        • Fischer M.
        • Kunkel A.
        • Bublak P.
        • Faiss J.H.
        • Hoffmann F.
        • Sailer M.
        • Schwab M.
        • Zettl U.K.
        • Köhler W.
        How reliable is the classification of cognitive impairment across different criteria in early and late stages of multiple sclerosis?.
        J. Neurol. Sci. 2014; 343: 91-99https://doi.org/10.1016/j.jns.2014.05.042
        • Fritz N.E.
        • Roy S.
        • Keller J.
        • Prince J.
        • Calabresi P.A.
        • Zackowski K.M.
        Pain, cognition and quality of life associate with structural measures of brain volume loss in multiple sclerosis.
        NeuroRehabilitation. 2016; https://doi.org/10.3233/NRE-161384
        • Geisseler O.
        • Pflugshaupt T.
        • Bezzola L.
        • Reuter K.
        • Weller D.
        • Schuknecht B.
        • Brugger P.
        • Linnebank M.
        Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner.
        NeuroImage Clin. 2016; 10: 89-95https://doi.org/10.1016/j.nicl.2015.11.008
        • Goretti B.
        • Portaccio E.
        • Zipoli V.
        • Hakiki B.
        • Siracusa G.
        • Sorbi S.
        • Amato M.P.
        Impact of cognitive impairment on coping strategies in multiple sclerosis.
        Clin. Neurol. Neurosurg. 2010; 112: 127-130https://doi.org/10.1016/j.clineuro.2009.10.019
        • Gouveia A.
        • Dias S.P.
        • Santos T.
        • Rocha H.
        • Coelho C.R.
        • Ruano L.
        • Galego O.
        • Diogo M.C.
        • Seixas D.
        • Sá M.J.
        • Batista S.
        Cognitive impairment and magnetic resonance imaging correlates in primary progressive multiple sclerosis.
        Acta Neurol. Scand. 2017; 136: 109-115https://doi.org/10.1111/ane.12702
        • Grassiot B.
        • Desgranges B.
        • Eustache F.
        • Defer G.
        Quantification and clinical relevance of brain atrophy in multiple sclerosis: a review.
        J. Neurol. 2009; 256: 1397-1412https://doi.org/10.1007/s00415-009-5108-4
        • Harrison D.M.
        • Roy S.
        • Oh J.
        • Izbudak I.
        • Pham D.
        • Courtney S.
        • Caffo B.
        • Jones C.K.
        • van Zijl P.
        • Calabresi P.A.
        Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis.
        JAMA Neurol. 2015; 72: 1004-1012https://doi.org/10.1001/jamaneurol.2015.1241
        • Hulst H.E.
        • Steenwijk M.D.
        • Versteeg A.
        • Pouwels P.J.W.
        • Vrenken H.
        • Uitdehaag B.M.J.
        • Polman C.H.
        • Geurts J.J.G.
        • Barkhof F.
        Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions.
        Neurology. 2013; 80: 1025-1032https://doi.org/10.1212/WNL.0b013e31828726cc
        • Hulst H.E.
        • Schoonheim M.M.
        • Van Geest Q.
        • Uitdehaag B.M.J.
        • Barkhof F.
        • Geurts J.J.G.
        Memory impairment in multiple sclerosis: relevance of hippocampal activation and hippocampal connectivity.
        Mult. Scler. 2015; 21: 1705-1712https://doi.org/10.1177/1352458514567727
        • Jenkinson M.
        • Smith S.
        A global optimisation method for robust affine registration of brain images.
        Med. Image Anal. 2001; 5: 143-156
        • Jonkman L.E.
        • Rosenthal D.M.
        • Sormani M.P.
        • Miles L.
        • Herbert J.
        • Grossman R.I.
        • Inglese M.
        Gray matter correlates of cognitive performance differ between relapsing-remitting and primary-progressive multiple sclerosis.
        PloS One. 2015; 10: e0129380https://doi.org/10.1371/journal.pone.0129380
        • Kos D.
        • Raeymaekers J.
        • Van Remoortel A.
        • D’hooghe M.B.
        • Nagels G.
        • D’Haeseleer M.
        • Peeters E.
        • Dams T.
        • Peeters T.
        Electronic visual analogue scales for pain, fatigue, anxiety and quality of life in people with multiple sclerosis using smartphone and tablet: a reliability and feasibility study.
        Clin. Rehabil. 2017; 31: 1215-1225https://doi.org/10.1177/0269215517692641
        • Kurtzke J.F.
        Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
        Neurology. 1983; 33: 1444-1452
        • Langdon D.
        • Amato M.
        • Boringa J.
        • Brochet B.
        • Foley F.
        • Fredrikson S.
        • Hämäläinen P.
        • Hartung H.-P.
        • Krupp L.
        • Penner I.
        • Reder A.
        • Benedict R.
        Recommendations for a brief international cognitive assessment for multiple sclerosis (BICAMS).
        Mult. Scler. 2012; 18: 891-898https://doi.org/10.1177/1352458511431076
        • Lanz M.
        • Hahn H.K.
        • Hildebrandt H.
        Brain atrophy and cognitive impairment in multiple sclerosis: a review.
        J. Neurol. 2007; 254: II43-48https://doi.org/10.1007/s00415-007-2011-8
        • Lazeron R.H.C.
        • de Sonneville L.M.J.
        • Scheltens P.
        • Polman C.H.
        • Barkhof F.
        Cognitive slowing in multiple sclerosis is strongly associated with brain volume reduction.
        Mult. Scler. 2006; 12: 760-768
      1. Lyrakos, G.N., Arvaniti, C., Smyrnioti, M., Kostopanagiotou, G., 2011. P03-561 - Translation and validation study of the depression anxiety stress scale in the greek general population and in a psychiatric patient’s sample. Eur. Psychiatry, Abstracts of the 19th European Congress of Psychiatry 26, 1731. 〈http://dx.doi.org/10.1016/S0924-9338(11)73435-6〉.

        • Marasescu R.
        • Cerezo Garcia M.
        • Aladro Benito Y.
        Impairment of visuospatial/visuoconstructional skills in multiple sclerosis patients: the correlation with regional lesion load and subcortical atrophy.
        Neurologia. 2016; 31: 169-175https://doi.org/10.1016/j.nrl.2015.06.003
        • Martola J.
        • Bergström J.
        • Fredrikson S.
        • Stawiarz L.
        • Hillert J.
        • Zhang Y.
        • Flodmark O.
        • Lilja A.
        • Ekbom A.
        • Aspelin P.
        • Wiberg M.K.
        A longitudinal observational study of brain atrophy rate reflecting four decades of multiple sclerosis: a comparison of serial 1D, 2D, and volumetric measurements from MRI images.
        Neuroradiology. 2010; 52: 109-117https://doi.org/10.1007/s00234-009-0593-9
        • Mineev K.K.
        • Prakhova L.N.
        • Il’ves A.G.
        • Kataeva G.V.
        • Petrov A.M.
        • Reznikova T.N.
        • Pozdnyakov A.V.
        • Stolyarov I.D.
        Characteristics of neurological and cognitive status in patients with multiple sclerosis in relation to the location and volumes of demyelination foci and the severity of brain atrophy.
        Neurosci. Behav. Physiol. 2009; 39: 35-38https://doi.org/10.1007/s11055-008-9086-2
        • Moccia M.
        • Lanzillo R.
        • Palladino R.
        • Chang K.C.-M.
        • Costabile T.
        • Russo C.
        • De Rosa A.
        • Carotenuto A.
        • Saccà F.
        • Maniscalco G.T.
        • Brescia Morra V.
        Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression.
        Mult. Scler. 2016; 22: 659-667https://doi.org/10.1177/1352458515599075
        • Montel S.
        • Spitz E.
        • Bungener C.
        Coping strategies in multiple sclerosis patients with frontal cognitive disorders.
        Eur. Neurol. 2012; 68: 84-88https://doi.org/10.1159/000337905
        • Papathanasiou A.
        • Messinis L.
        • Zampakis P.
        • Panagiotakis G.
        • Gourzis P.
        • Georgiou V.
        • Papathanasopoulos P.
        Thalamic atrophy predicts cognitive impairment in relapsing remitting multiple sclerosis. Effect on instrumental activities of daily living and employment status.
        J. Neurol. Sci. 2015; 358: 236-242https://doi.org/10.1016/j.jns.2015.09.001
        • Patenaude B.
        • Smith S.M.
        • Kennedy D.N.
        • Jenkinson M.
        A Bayesian model of shape and appearance for subcortical brain segmentation.
        NeuroImage. 2011; 56: 907-922https://doi.org/10.1016/j.neuroimage.2011.02.046
        • Pinter D.
        • Khalil M.
        • Pichler A.
        • Langkammer C.
        • Ropele S.
        • Marschik P.B.
        • Fuchs S.
        • Fazekas F.
        • Enzinger C.
        Predictive value of different conventional and non-conventional MRI-parameters for specific domains of cognitive function in multiple sclerosis.
        NeuroImage Clin. 2015; 7: 715-720https://doi.org/10.1016/j.nicl.2015.02.023
        • Polman C.H.
        • Reingold S.C.
        • Banwell B.
        • Clanet M.
        • Cohen J.A.
        • Filippi M.
        • Fujihara K.
        • Havrdova E.
        • Hutchinson M.
        • Kappos L.
        • Lublin F.D.
        • Montalban X.
        • O’Connor P.
        • Sandberg-Wollheim M.
        • Thompson A.J.
        • Waubant E.
        • Weinshenker B.
        • Wolinsky J.S.
        Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria.
        Ann. Neurol. 2011; 69: 292-302https://doi.org/10.1002/ana.22366
        • Polychroniadou E.
        • Bakirtzis C.
        • Langdon D.
        • Lagoudaki R.
        • Kesidou E.
        • Theotokis P.
        • Tsalikakis D.
        • Poulatsidou K.
        • Kyriazis O.
        • Boziki M.
        • Papadopoulos G.
        • Boura E.
        • Sintila L.
        • Hatzigeorgiou S.
        • Ziamos C.
        • Ioannidis P.
        • Karacostas D.
        • Grigoriadis N.
        Validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in Greek population with multiple sclerosis.
        Mult. Scler. Relat. Disord. 2016; 9: 68-72https://doi.org/10.1016/j.msard.2016.06.011
        • Popescu V.
        • Klaver R.
        • Voorn P.
        • Galis-de Graaf Y.
        • Knol D.L.
        • Twisk J.W.R.
        • Versteeg A.
        • Schenk G.J.
        • Van der Valk P.
        • Barkhof F.
        • De Vries H.E.
        • Vrenken H.
        • Geurts J.J.G.
        What drives MRI-measured cortical atrophy in multiple sclerosis?.
        Mult. Scler. 2015; 21: 1280-1290https://doi.org/10.1177/1352458514562440
        • Preziosa P.
        • Rocca M.A.
        • Pagani E.
        • Stromillo M.L.
        • Enzinger C.
        • Gallo A.
        • Hulst H.E.
        • Atzori M.
        • Pareto D.
        • Riccitelli G.C.
        • Copetti M.
        • De Stefano N.
        • Fazekas F.
        • Bisecco A.
        • Barkhof F.
        • Yousry T.A.
        • Arévalo M.J.
        • Filippi M.
        • MAGNIMS Study Group
        Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: a Multicenter Study.
        Hum. Brain Mapp. 2016; 37: 1627-1644https://doi.org/10.1002/hbm.23125
        • Rabinowitz A.R.
        • Arnett P.A.
        A longitudinal analysis of cognitive dysfunction, coping, and depression in multiple sclerosis.
        Neuropsychology. 2009; 23: 581-591https://doi.org/10.1037/a0016064
        • Rocca M.A.
        • Amato M.P.
        • De Stefano N.
        • Enzinger C.
        • Geurts J.J.
        • Penner I.-K.
        • Rovira A.
        • Sumowski J.F.
        • Valsasina P.
        • Filippi M.
        • MAGNIMS Study Group
        Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis.
        Lancet Neurol. 2015; 14: 302-317https://doi.org/10.1016/S1474-4422(14)70250-9
        • Rojas J.I.
        • Patrucco L.
        • Miguez J.
        • Cristiano E.
        Brain atrophy in multiple sclerosis: therapeutic, cognitive and clinical impact.
        Arq. Neuropsiquiatr. 2016; 74: 235-243https://doi.org/10.1590/0004-282X20160015
        • Rossi F.
        • Giorgio A.
        • Battaglini M.
        • Stromillo M.L.
        • Portaccio E.
        • Goretti B.
        • Federico A.
        • Hakiki B.
        • Amato M.P.
        • De Stefano N.
        Relevance of brain lesion location to cognition in relapsing multiple sclerosis.
        PloS One. 2012; 7: e44826https://doi.org/10.1371/journal.pone.0044826
        • Rovaris M.
        • Comi G.
        • Filippi M.
        MRI markers of destructive pathology in multiple sclerosis-related cognitive dysfunction.
        J. Neurol. Sci. 2006; 245: 111-116https://doi.org/10.1016/j.jns.2005.07.014
        • Sacco R.
        • Bisecco A.
        • Corbo D.
        • Corte M.D.
        • d’Ambrosio A.
        • Docimo R.
        • Gallo A.
        • Esposito F.
        • Esposito S.
        • Cirillo M.
        • Lavorgna L.
        • Tedeschi G.
        • Bonavita S.
        Cognitive impairment and memory disorders in relapsing–remitting multiple sclerosis: the role of white matter, gray matter and hippocampus.
        J. Neurol. 2015; 262: 1691-1697https://doi.org/10.1007/s00415-015-7763-y
        • Sánchez M.P.
        • Nieto A.
        • Barroso J.
        • Martín V.
        • Hernández M.A.
        Brain atrophy as a marker of cognitive impairment in mildly disabling relapsing-remitting multiple sclerosis.
        Eur. J. Neurol. 2008; 15: 1091-1099https://doi.org/10.1111/j.1468-1331.2008.02259.x
        • Sanfilipo M.P.
        • Benedict R.H.B.
        • Weinstock-Guttman B.
        • Bakshi R.
        Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis.
        Neurology. 2006; 66: 685-692https://doi.org/10.1212/01.wnl.0000201238.93586.d9
        • Sbardella E.
        • Petsas N.
        • Tona F.
        • Prosperini L.
        • Raz E.
        • Pace G.
        • Pozzilli C.
        • Pantano P.
        Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients.
        PloS One. 2013; 8: e63250https://doi.org/10.1371/journal.pone.0063250
        • Smith S.M.
        Fast robust automated brain extraction.
        Hum. Brain Mapp. 2002; 17: 143-155https://doi.org/10.1002/hbm.10062
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.J.
        • Johansen-Berg H.
        • Bannister P.R.
        • De Luca M.
        • Drobnjak I.
        • Flitney D.E.
        • Niazy R.K.
        • Saunders J.
        • Vickers J.
        • Zhang Y.
        • De Stefano N.
        • Brady J.M.
        • Matthews P.M.
        Advances in functional and structural MR image analysis and implementation as FSL.
        NeuroImage. 2004; 23: S208-219https://doi.org/10.1016/j.neuroimage.2004.07.051
        • Tiemann L.
        • Penner I.K.
        • Haupts M.
        • Schlegel U.
        • Calabrese P.
        Cognitive decline in multiple sclerosis: impact of topographic lesion distribution on differential cognitive deficit patterns.
        Mult. Scler. 2009; 15: 1164-1174https://doi.org/10.1177/1352458509106853
        • Valentino P.
        • Cerasa A.
        • Chiriaco C.
        • Nisticò R.
        • Pirritano D.
        • Gioia M.
        • Lanza P.
        • Canino M.
        • Del Giudice F.
        • Gallo O.
        • Condino F.
        • Torchia G.
        • Quattrone A.
        Cognitive deficits in multiple sclerosis patients with cerebellar symptoms.
        Mult. Scler. 2009; 15: 854-859https://doi.org/10.1177/1352458509104589
        • Vollmer T.
        • Huynh L.
        • Kelley C.
        • Galebach P.
        • Signorovitch J.
        • DiBernardo A.
        • Sasane R.
        Relationship between brain volume loss and cognitive outcomes among patients with multiple sclerosis: a systematic literature review.
        Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2016; 37: 165-179https://doi.org/10.1007/s10072-015-2400-1
        • Yaldizli Ö.
        • Penner I.-K.
        • Frontzek K.
        • Naegelin Y.
        • Amann M.
        • Papadopoulou A.
        • Sprenger T.
        • Kuhle J.
        • Calabrese P.
        • Radü E.W.
        • Kappos L.
        • Gass A.
        The relationship between total and regional corpus callosum atrophy, cognitive impairment and fatigue in multiple sclerosis patients.
        Mult. Scler. 2014; 20: 356-364https://doi.org/10.1177/1352458513496880
        • Zhang Y.
        • Brady M.
        • Smith S.
        Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.
        IEEE Trans. Med. Imaging. 2001; 20: 45-57https://doi.org/10.1109/42.906424