Advertisement

Is multiple sclerosis a length-dependent central axonopathy? The case for therapeutic lag and the asynchronous progressive MS hypotheses

Published:January 16, 2017DOI:https://doi.org/10.1016/j.msard.2017.01.007

      Highlights

      • Anti-inflammatory therapies in progressive MS have been negative; why?
      • Insufficient neuronal reserve capacity explains therapeutic lag
      • Delayed neurodegeneration is primed by prior inflammation
      • MS may be a central length-dependent axonopathy
      • Progressive MS may occur asynchronously

      Abstract

      Trials of anti-inflammatory therapies in non-relapsing progressive multiple sclerosis (MS) have been stubbornly negative except recently for an anti-CD20 therapy in primary progressive MS and a S1P modulator siponimod in secondary progressive MS. We argue that this might be because trials have been too short and have focused on assessing neuronal pathways, with insufficient reserve capacity, as the core component of the primary outcome. Delayed neuroaxonal degeneration primed by prior inflammation is not expected to respond to disease-modifying therapies targeting MS-specific mechanisms. However, anti-inflammatory therapies may modify these damaged pathways, but with a therapeutic lag that may take years to manifest. Based on these observations we propose that clinically apparent neurodegenerative components of progressive MS may occur in a length-dependent manner and asynchronously. If this hypothesis is confirmed it may have major implications for the future design of progressive MS trials.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Al-Izki S.
        • Pryce G.
        • Jackson S.J.
        • Giovannoni G.
        • Baker D.
        Immunosuppression with FTY720 is insufficient to prevent secondary progressive neurodegeneration in experimental autoimmune encephalomyelitis.
        Mult. Scler. 2011; 17: 939-948
        • Al-Izki S.
        • Pryce G.
        • O’Neill J.K.
        • Butter C.
        • Giovannoni G.
        • Amor S.
        • Baker D.
        Practical guide to the induction of relapsing progressive experimental autoimmune encephalomyelitis in the Biozzi ABH mouse.
        Mult. Scler. Relat. Disord. 2012; 1: 29-38
        • Amato M.P.
        • Hakiki B.
        • Goretti B.
        • Rossi F.
        • Stromillo M.L.
        • Giorgio A.
        • Roscio M.
        • Ghezzi A.
        • Guidi L.
        • Bartolozzi M.L.
        • Portaccio E.
        • De Stefano N.
        • Italian RIS/MS Study Group
        Association of MRI metrics and cognitive impairment in radiologically isolated syndromes.
        Neurology. 2012; 78: 309-314
        • Bermel RA
        • Bakshi R.
        The measurement and clinical relevance of brain atrophy in multiple sclerosis.
        Lancet Neurol. 2006; 5: 158-170
        • Campbell G.R.
        • Worrall J.T.
        • Mahad D.J.
        The central role of mitochondria in axonal degeneration in multiple sclerosis.
        Mult. Scler. J. 2014; 20: 1806-1813
        • Chataway J.
        • Schuerer N.
        • Alsanousi A.
        • Chan D.
        • MacManus D.
        • Hunter K.
        • Anderson V.
        • Bangham C.R.M.
        • Clegg S.
        • Nielsen C.
        • Fox N.C.
        • Wilkie D.
        • Nicholas J.M.
        • Calder V.L.
        • Greenwood J.
        • Frost C.
        • Nicholas R.
        Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial.
        Lancet. 2014; 383: 2213-2221
        • Cohen J.A.
        • Cutter G.R.
        • Fischer J.S.
        • Goodman A.D.
        • Heidenreich F.R.
        • Kooijmans M.F.
        • Sandrock A.W.
        • Rudick R.A.
        • Simon J.H.
        • Simonian N.A.
        • Tsao E.C.
        • Whitaker J.N.
        • IMPACT Investigators
        Benefit of interferon beta-1a on MSFC progression in secondary progressive MS.
        Neurology. 2002; 59: 679-687
        • Coles A.J.
        • Cox A.
        • Le Page E.
        • Jones J.
        • Trip S.A.
        • Deans J.
        • Seaman S.
        • Miller D.H.
        • Hale G.
        • Waldmann H.
        • Compston D.A.
        The window of therapeutic opportunity in multiple sclerosis.
        J. Neurol. 2006; 253: 98-108
        • Dalakas M.C.
        The post-polio syndrome as an evolved clinical entity. definition and clinical description.
        Ann. N. Y. Acad. Sci. 1995; 753: 68-80
        • De Stefano N.
        • Giorgio A.
        • Battaglini M.
        • Rovaris M.
        • Sormani M.P.
        • Barkhof F.
        • Korteweg T.
        • Enzinger C.
        • Fazekas F.
        • Calabrese M.
        • Dinacci D.
        • Tedeschi G.
        • Gass A.
        • Montalban X.
        • Rovira A.
        • Thompson A.
        • Comi G.
        • Miller D.H.
        • Filippi M.
        Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes.
        Neurology. 2010; 74: 1868-1876
        • Ferguson B.
        • Matyszak M.K.
        • Esiri M.M.
        • Perry V.H.
        Axonal damage in acute multiple sclerosis lesions.
        Brain. 1997; 120: 393-399
        • Friese M.A.
        • Schattling B.
        • Fugger L.
        Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis.
        Nat. Rev. Neurol. 2014; 10: 225-238
        • Frischer J.M.
        • Bramow S.
        • Dal-Bianco A.
        • Lucchinetti C.F.
        • Rauschka H.
        • Schmidbauer M.
        • Laursen H.
        • Sorensen P.S.
        • Lassmann H.
        The relation between inflammation and neurodegeneration in multiple sclerosis brains.
        Brain. 2009; 132: 1175-1189
        • Garbern J.Y.
        • Yool D.A.
        • Moore G.J.
        • Wilds I.B.
        • Faulk M.W.
        • Klugmann M.
        • Nave K.-A.
        • Sistermans E.A.
        • van der Knaap M.S.
        • Bird T.D.
        • Shy M.E.
        • Kamholz J.A.
        • Griffiths I.R.
        Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation.
        Brain. 2002; 125: 551-561
        • Goodkin DE
        • Rudick RA
        • VanderBrug Medendorp S
        • Daughtry MM
        • Schwetz KM
        • Fischer J
        • Van Dyke C
        Low-dose (7.5 mg) oral methotrexate reduces the rate of progression in chronic progressive multiple sclerosis.
        Ann Neurol. 1995; 37: 30-40
      1. Hallpike, J.F., Adams, C.W.M., Tourtellotte, W.W., 1983. Multiple Sclerosis: Pathology, Diagnosis, and Management.

        • Hampton D.W.
        • Serio A.
        • Pryce G.
        • Al-Izki S.
        • Franklin R.J.
        • Giovannoni G.
        • Baker D.
        • Chandran S.
        Neurodegeneration progresses despite complete elimination of clinical relapses in a mouse model of multiple sclerosis.
        Acta Neuropathol. Commun. 2013; 1: 84
        • Harding A.E.
        • Sweeney M.G.
        • Miller D.H.
        • Mumford C.J.
        • Kellar-Wood H.
        • Menard D.
        • McDonald W.I.
        • Compston D.A.
        Occurrence of a multiple sclerosis-like illness in women who have a Leber's hereditary optic neuropathy mitochondrial DNA mutation.
        Brain. 1992; 115: 979-989
        • Hawker K.
        • Kathleen H.
        • Paul O.’connor
        • Freedman M.S.
        • Calabresi P.A.
        • Jack A.
        • Jack S.
        • Stephen H.
        • Emmanuelle W.
        • Timothy V.
        • Hillel P.
        • Jiameng Z.
        • Peter C.
        • Smith C.H.
        • OLYMPUS trial group
        Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial.
        Ann. Neurol. 2009; 66: 460-471
        • Herndon R.M.
        Medical hypothesis: why secondary progressive multiple sclerosis is a relentlessly progressive illness.
        Arch. Neurol. 2002; 59: 301-304
        • Hobart J.
        • Freeman J.
        • Thompson A.
        Kurtzke scales revisited: the application of psychometric methods to clinical intuition.
        Brain. 2000; 123: 1027-1040
        • Jacques F.H.
        • Lublin F.D.
        Defining the clinical course of multiple sclerosis: the 2013 revisions.
        Neurology. 2015; 84 (963–963)
        • Kalincik T.
        • Buzzard K.
        • Jokubaitis V.
        • Trojano M.
        • Duquette P.
        • Izquierdo G.
        • Girard M.
        • Lugaresi A.
        • Grammond P.
        • Grand’Maison F.
        • Oreja-Guevara C.
        • Boz C.
        • Hupperts R.
        • Petersen T.
        • Giuliani G.
        • Iuliano G.
        • Lechner-Scott J.
        • Barnett M.
        • Bergamaschi R.
        • Van Pesch V.
        • Amato M.P.
        • van Munster E.
        • Fernandez-Bolanos R.
        • Verheul F.
        • Fiol M.
        • Cristiano E.
        • Slee M.
        • Rio M.E.
        • Spitaleri D.
        • Alroughani R.
        • Gray O.
        • Saladino M.L.
        • Flechter S.
        • Herbert J.
        • Cabrera-Gomez J.A.
        • Vella N.
        • Paine M.
        • Shaw C.
        • Moore F.
        • Vucic S.
        • Savino A.
        • Singhal B.
        • Petkovska-Boskova T.
        • Parratt J.
        • Sirbu C.-A.
        • Rozsa C.
        • Liew D.
        • Butzkueven H.
        • MSBase Study Group
        Risk of relapse phenotype recurrence in multiple sclerosis.
        Mult. Scler. 2014; 20: 1511-1522
        • Kalven H.
        A Worthy Tradition: reedom of Speech in America.
        HarperCollins, 1989
        • Koudriavtseva T.
        • Mainero C.
        Brain atrophy as a measure of neuroprotective drug effects in multiple sclerosis: influence of inflammation.
        Front. Hum. Neurosci. 2016; 10: 226
        • Kremenchutzky M.
        • Rice G.P.A.
        • Baskerville J.
        • Wingerchuk D.M.
        • Ebers G.C.
        The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease.
        Brain. 2006; 129: 584-594
        • Kurtzke J.F.
        On the origin of EDSS.
        Mult. Scler. Relat. Disord. 2015; 4: 95-103
        • Kutzelnigg A.
        • Lassmann H.
        Pathology of multiple sclerosis and related inflammatory demyelinating diseases.
        Handb. Clin. Neurol. 2014; 122: 15-58
        • Lassmann H.
        • Hans L.
        • van Horssen J.
        • Don M.
        Progressive multiple sclerosis: pathology and pathogenesis.
        Nat. Rev. Neurol. 2012; 8: 647-656
        • Liu C.N.
        • Chambers W.W.
        Intraspinal sprouting of dorsal root axons; development of new collaterals and preterminals following partial denervation of the spinal cord in the cat.
        AMA Arch. Neurol. Psychiatry. 1958; 79: 46-61
        • Lublin F.D.
        • Cutter G.
        • Giovannoni G.
        • Pace A.
        • Campbell N.R.
        • Belachew S.
        Natalizumab reduces relapse clinical severity and improves relapse recovery in MS.
        Mult. Scler. Relat. Disord. 2014; 3: 705-711
        • Lublin F.
        • Miller D.H.
        • Freedman M.S.
        • Cree B.A.C.
        • Wolinsky J.S.
        • Weiner H.
        • Lubetzki C.
        • Hartung H.-P.
        • Montalban X.
        • Uitdehaag B.M.J.
        • Merschhemke M.
        • Li B.
        • Putzki N.
        • Liu F.C.
        • Häring D.A.
        • Kappos L.
        • INFORMS study investigators
        Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial.
        Lancet. 2016; 387: 1075-1084
        • Montalban X.
        • Sastre-Garriga J.
        • Tintoré M.
        • Brieva L.
        • Aymerich F.X.
        • Río J.
        • Porcel J.
        • Borràs C.
        • Nos C.
        • Rovira A.
        A single-center, randomized, double-blind, placebo-controlled study of interferon beta-1b on primary progressive and transitional multiple sclerosis.
        Mult. Scler. 2009; 15: 1195-1205
        • Moore G.R.W.
        • Laule C.
        Neuropathologic correlates of magnetic resonance imaging in multiple sclerosis.
        J. Neuropathol. Exp. Neurol. 2012; 71: 762-778
        • Mori F.
        • Kusayanagi H.
        • Nicoletti C.G.
        • Weiss S.
        • Marciani M.G.
        • Centonze D.
        Cortical plasticity predicts recovery from relapse in multiple sclerosis.
        Mult. Scler. 2014; 20: 451-457
        • Morota S.
        • Hansson M.J.
        • Ishii N.
        • Kudo Y.
        • Elmér E.
        • Uchino H.
        Spinal cord mitochondria display lower calcium retention capacity compared with brain mitochondria without inherent differences in sensitivity to cyclophilin D inhibition.
        J. Neurochem. 2007; 103: 2066-2076
        • Paz Soldán M.M.
        • Novotna M.
        • Abou Zeid N.
        • Kale N.
        • Tutuncu M.
        • Crusan D.J.
        • Atkinson E.J.
        • Siva A.
        • Keegan B.M.
        • Pirko I.
        • Pittock S.J.
        • Lucchinetti C.F.
        • Weinshenker B.G.
        • Rodriguez M.
        • Kantarci O.H.
        Relapses and disability accumulation in progressive multiple sclerosis.
        Neurology. 2015; 84: 81-88
        • Polman C.H.
        • O’Connor P.W.
        • Havrdova E.
        • Hutchinson M.
        • Kappos L.
        • Miller D.H.
        • Phillips J.T.
        • Lublin F.D.
        • Giovannoni G.
        • Wajgt A.
        • Toal M.
        • Lynn F.
        • Panzara M.A.
        • Sandrock A.W.
        • AFFIRM Investigators
        A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis.
        N. Engl. J. Med. 2006; 354: 899-910
        • Pryce G.
        • O’Neill J.K.
        • Croxford J.L.
        • Amor S.
        • Hankey D.J.
        • East E.
        • Giovannoni G.
        • Baker D.
        Autoimmune tolerance eliminates relapses but fails to halt progression in a model of multiple sclerosis.
        J. Neuroimmunol. 2005; 165: 41-52
        • Radue EW
        • Barkhof F
        • Kappos L
        • Sprenger T
        • Häring DA
        • de Vera A
        • von Rosenstiel P
        • Bright JR
        • Francis G
        • Cohen JA
        Correlation between brain volume loss and clinical and MRI outcomes in multiple sclerosis.
        Neurology. 2015; 84: 784-793
        • Radue E.W.
        • Sprenger T.
        • De Vera A.
        • Francis G.
        • Rochotte E.
        • Tomic D.
        • Kappos L.
        Effect of fingolimod on evolution of baseline enhancing MRI lesions into persistent T1 hypointense lesions: post hoc analysis of the FREEDOMS study.
        Mult. Scler. J. 2014; 20: 112-113
        • Rao N.A.
        • Guy J.
        • Sheffield P.S.
        Effects of chronic demyelination on axonal transport in experimental allergic optic neuritis. invest.
        Ophthalmol. Vis. Sci. 1981; 21: 606-611
        • Rojas J.I.
        • Patrucco L.
        • Miguez J.
        • Besada C.
        • Cristiano E.
        Brain atrophy as a non-response predictor to interferon-beta in relapsing-remitting multiple sclerosis.
        Neurol. Res. 2014; 36: 615-618
        • Rudick R.A.
        • Trapp B.D.
        Gray-matter injury in multiple sclerosis.
        N. Engl. J. Med. 2009; 361: 1505-1506
        • Sastre-Garriga J.
        • Tur C.
        • Pareto D.
        • Vidal-Jordana A.
        • Auger C.
        • Río J.
        • Huerga E.
        • Tintoré M.
        • Rovira A.
        • Montalban X.
        Brain atrophy in natalizumab-treated patients: a 3-year follow-up.
        Mult. Scler. 2014; https://doi.org/10.1177/1352458514556300
        • Schieber M.H.
        Constraints on somatotopic organization in the primary motor cortex.
        J. Neurophysiol. 2001; 86: 2125-2143
        • Schwartz C.E.
        • Quaranto B.R.
        • Healy B.C.
        • Benedict R.H.
        • Vollmer T.L.
        Cognitive reserve and symptom experience in multiple sclerosis: a buffer to disability progression over time?.
        Arch. Phys. Med. Rehabil. 2013; 94: 1971-1981
        • Simone I.L.
        • Carrara D.
        • Tortorella C.
        • Liguori M.
        • Lepore V.
        • Pellegrini F.
        • Bellacosa A.
        • Ceccarelli A.
        • Pavone I.
        • Livrea P.
        Course and prognosis in early-onset MS: comparison with adult-onset forms.
        Neurology. 2002; 59: 1922-1928
        • Soon D.
        • Altmann D.R.
        • Fernando K.T.M.
        • Giovannoni G.
        • Barkhof F.
        • Polman C.H.
        • O’Connor P.
        • Gray B.
        • Panzara M.
        • Miller D.H.
        A study of subtle blood brain barrier disruption in a placebo-controlled trial of natalizumab in relapsing remitting multiple sclerosis.
        J. Neurol. 2007; 254: 306-314
        • Sorensen P.S.
        • Lisby S.
        • Grove R.
        • Derosier F.
        • Shackelford S.
        • Havrdova E.
        • Drulovic J.
        • Filippi M.
        Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study.
        Neurology. 2014; 82: 573-581
      2. Steiner D., Arnold D., Freedman M., Goldman M., Hartung H., Havrdova E., Jeffery D., Kapoor R., Miller A., Sellebjerg F., Yu B., Forrestal F., Liu K., Amarante D., Cadavid D., n.d. Natalizumab versus placebo in patients with secondary porgressive multiple sclerosis (SPMS): trial results from ASCEND, a multicentre, double-blind, placebo-controlled, randomised phase 3 clinical trial. In: Proceedings of the AAN 2016. Presented at the American Academy of Neurology Annual Meeting 2016. p. P009.

        • Trapp B.D.
        • Peterson J.
        • Ransohoff R.M.
        • Rudick R.
        • Mörk S.
        • Bö L.
        Axonal transection in the lesions of multiple sclerosis.
        N. Engl. J. Med. 1998; 338: 278-285
        • Tur C.
        • Montalban X.
        • Tintoré M.
        • Nos C.
        • Río J.
        • Aymerich F.X.
        • Brieva L.
        • Téllez N.
        • Perkal H.
        • Comabella M.
        • Galán I.
        • Calle D.
        • Sastre-Garriga J.
        • Rovira A.
        Interferon β−1b for the treatment of primary progressive multiple sclerosis: five-year clinical trial follow-up.
        Arch. Neurol. 2011; 68: 1421-1427
        • Webster K.E.
        Somaesthetic pathways.
        Br. Med. Bull. 1977; 33: 113-120
        • Weinshenker B.G.
        • Bass B.
        • Rice G.P.
        • Noseworthy J.
        • Carriere W.
        • Baskerville J.
        • Ebers G.C.
        The natural history of multiple sclerosis: a geographically based study.
        Predict. Value Early Clin. Course Brain. 1989; 112 (2): 1419-1428
        • Wiesendanger M.
        Pyramidal tract function and the clinical “pyramidal syndrome.”.
        Hum. Neurobiol. 1984; 2: 227-234
        • Wolinsky J.S.
        • PROMiSe Trial Study Group
        The PROMiSe trial: baseline data review and progress report.
        Mult. Scler. 2004; 10: S71-S72
        • Zhang J.
        • Waubant E.
        • Cutter G.
        • Wolinsky J.
        • Leppert D.
        Composite end points to assess delay of disability progression by MS treatments.
        Mult. Scler. 2014; 20: 1494-1501