Advertisement
Review| Volume 3, ISSUE 5, P555-564, September 2014

Download started.

Ok

Experimental autoimmune encephalomyelitis is a good model of multiple sclerosis if used wisely

  • David Baker
    Correspondence
    Corresponding author. Tel.: +44 207 882 2485; fax: +44 207 882 2180.
    Affiliations
    Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
    Search for articles by this author
  • Sandra Amor
    Affiliations
    Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom

    Pathology Department, VU Medical Centre, Free University of Amsterdam, The Netherlands
    Search for articles by this author

      Highlights

      • EAE of all models has the most features in common with MS.
      • EAE can be used to identify disease mechanisms and generate therapeutics for MS.
      • There has been a relative failure to translate therapies from EAE to MS.
      • Experimental design by basic scientists contributes to lack of translation.
      • Importantly, actions of Neurologists and Pharma hamper the translational process.

      Abstract

      Although multiple sclerosis is a uniquely human disease, many pathological features can be induced in experimental autoimmune encephalomyelitis (EAE) models following induction of central nervous system-directed autoimmunity. Whilst it is an imperfect set of models, EAE can be used to identify pathogenic mechanisms and therapeutics. However, the failure to translate many treatments from EAE into human benefit has led some to question the validity of the EAE model. Whilst differences in biology between humans and other species may account for this, it is suggested here that the failure to translate may be considerably influenced by human activity. Basic science contributes to failings in aspects of experimental design and over-interpretation of results and lack of transparency and reproducibility of the studies. Importantly issues in trial design by neurologists and other actions of the pharmaceutical industry destine therapeutics to failure and terminate basic science projects. However animal, particularly mechanism-orientated, studies have increasingly identified useful treatments and provided mechanistic ideas on which most hypothesis-led clinical research is based. Without EAE and other animal studies, clinical investigations will continue to be “look-see” exercises, which will most likely provide more misses than hits and will fail the people with MS that they aim to serve.

      Abbreviations:

      EAE (experimental autoimmune encephalomyelitis), MS (multiple sclerosis), PwMS (person with MS)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Al-Izki S.
        • Pryce G.
        • Jackson S.J.
        • Giovannoni G.
        • Baker D.
        Immunosuppression with FTY720 is insufficient to prevent secondary progressive neurodegeneration in experimental autoimmune encephalomyelitis.
        Mult Scler. 2011; 17: 939-948
        • Amor S.
        • Baker D.
        • Groome N.
        • Turk J.L.
        Identification of a major encephalitogenic epitope of proteolipid protein (residues 56–70) for the induction of experimental allergic encephalomyelitis in Biozzi AB/H and nonobese diabetic mice.
        J Immunol. 1993; 150: 5666-5672
        • Amor S.
        • Baker D.
        Checklist for reporting and reviewing studies of experimental animal models of multiple sclerosis and related disorders.
        Mult Scler Relat Dis. 2012; 1: 111-115
        • Arnason B.
        Tumour necrosis factor neutralization in MS: A cautionary tale.
        Int MS J. 2011; 17: 63-68
        • Attarwala H.
        TGN1412: from discovery to disaster.
        J Young Pharm. 2010; 2: 332-336
        • Baker D.
        • Butler D.
        • Scallon B.J.
        • O’Neill J.K.
        • Turk J.L.
        • Feldmann M.
        Control of established experimental allergic encephalomyelitis by inhibition of tumor necrosis factor (TNF) activity within the central nervous system using monoclonal antibodies and TNF receptor-immunoglobulin fusion proteins.
        Eur J Immunol. 1994; 24: 2040-2048
        • Baker D.
        • Gerritsen W.
        • Rundle J.
        • Amor S.
        Critical appraisal of animal models of multiple sclerosis.
        Mult Scler. 2011; 17: 647-657
        • Baker D.
        • Amor S.
        Publication guidelines for refereeing and reporting on animal use in experimental autoimmune encephalomyelitis.
        J Neuroimmunol. 2012; 242: 78-83
        • Baker D.
        • Pryce G.
        • Jackson S.J.
        • Bolton C.
        • Giovannoni G.
        The biology that underpins the therapeutic potential of cannabis-based medicines for the control of spasticity in multiple sclerosis.
        Mult Scler Relat Dis. 2012; 1: 64-74
        • Baker D.
        • Lidster K.
        • Sottomayor A.
        • Amor S.
        Two years later: journals are not yet enforcing the ARRIVE guidelines on reporting standards for preclinical animal studies.
        PLos Biol. 2014; 12: e1001756
        • Baker D.
        • Pryce G.
        • Croxford J.L.
        • Brown P.
        • Pertwee R.G.
        • Makriyannis A.
        • et al.
        Endocannabinoids control spasticity in a multiple sclerosis model.
        FASEB J. 2001; 15: 300-302
        • Baldwin K.J.
        • Hogg J.P.
        Progressive multifocal leukoencephalopathy in patients with multiple sclerosis.
        Curr Opin Neurol. 2013; 26: 318-323
        • Barnett M.H.
        • Prineas J.W.
        Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion.
        Ann Neurol. 2004; 55: 458-468
        • Ben-Hur T.
        Immunomodulation by neural stem cells.
        J Neurol Sci. 2008; 265: 102-104
        • Benson J.M.
        • Stuckman S.S.
        • Cox K.L.
        • Wardrop R.M.
        • Gienapp I.E.
        • Cross A.H.
        • et al.
        Oral administration of myelin basic protein is superior to myelin in suppressing established relapsing experimental autoimmune encephalomyelitis.
        J Immunol. 1999; 162: 6247-6254
        • Bielekova B.
        • Goodwin B.
        • Richert N.
        • Cortese I.
        • Kondo T.
        • Afshar G.
        • et al.
        Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand.
        Nat Med. 2000; 6: 1167-1175
        • Bielekova B.
        • Richert N.
        • Howard T.
        • Packer A.N.
        • Blevins G.
        • Ohayon J.
        • et al.
        Treatment with the phosphodiesterase type-4 inhibitor rolipram fails to inhibit blood–brain barrier disruption in multiple sclerosis.
        Mult Scler. 2009; 15: 1206-1214
        • Bø L.
        • Vedeler C.A.
        • Nyland H.I.
        • Trapp B.D.
        • Mørk S.J.
        Subpial demyelination in the cerebral cortex of multiple sclerosis patients.
        J Neuropathol Exp Neurol. 2003; 62: 723-732
        • Bowling A.C.
        Complementary and alternative medicine and multiple sclerosis.
        Neurol Clin. 2011; 29: 465-480
        • Button K.S.
        • Ioannidis J.P.
        • Mokrysz C.
        • Nosek B.A.
        • Flint J.
        • Robinson E.S.
        • et al.
        Power failure: why small sample size undermines the reliability of neuroscience.
        Nat Rev Neurosci. 2013; 14: 365-376
        • Cayrol R.
        • Saikali P.
        • Vincent T.
        Effector functions of anti aquaporin-4 autoantibodies in neuromyelitis optica.
        Ann N Y Acad Sci. 2009; 1173: 478-486
        • Coles A.J.
        • Wing M.G.
        • Molyneux P.
        • Paolillo A.
        • Davie C.M.
        • Hale G.
        • et al.
        Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis.
        Ann Neurol. 1999; 46: 296-304
        • Coles A.J.
        • Compston D.A.
        • Selmaj K.W.
        • Lake S.L.
        • Moran S.
        • Margolin D.H.
        • et al.
        Alemtuzumab vs. interferon beta-1a in early multiple sclerosis.
        N Engl J Med. 2008; 359: 1786-1801
        • Coles A.J.
        • Twyman C.L.
        • Arnold D.L.
        • Cohen J.A.
        • Confavreux C.
        • Fox E.J.
        • et al.
        CARE-MS II investigators. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial.
        Lancet. 2012; 380: 1829-1839
        • Compston A.
        • Coles A.
        Multiple sclerosis.
        Lancet. 2002; 359: 1221-1231
        • Compston A.
        • Coles A.
        Multiple sclerosis.
        Lancet. 2008; 372: 1502-1517
        • Croxford J.L.
        • Miller S.D.
        Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R+WIN55,212.
        J Clin Investig. 2003; 111: 1231-1240
        • Croxford J.L.
        • Pryce G.
        • Jackson S.J.
        • Ledent C.
        • Giovannoni G.
        • Pertwee R.G.
        • et al.
        Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis.
        J Neuroimmunol. 2008; 193: 120-129
        • Dutta R.
        • Trapp B.D.
        Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis.
        Prog Neurobiol. 2011; 93: 1-12
        • Fanelli D.
        • Ioannidis J.P.
        US studies may overestimate effect sizes in softer research.
        Proc Natl Acad Sci USA. 2013; 110: 15031-15036
        • Ferguson B.
        • Matyszak M.K.
        • Esiri M.M.
        • Perry V.H.
        Axonal damage in acute multiple sclerosis lesions.
        Brain. 1997; 120: 393-399
        • Freedman M.S.
        • Bar-Or A.
        • Oger J.
        • Traboulsee A.
        • Patry D.
        • Young C.
        • et al.
        MAESTRO-01 Investigators. A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS.
        Neurology. 2011; 77: 1551-1560
        • Friese M.A.
        • Montalban X.
        • Willcox N.
        • Bell J.I.
        • Martin R.
        • Fugger L.
        The value of animal models for drug development in multiple sclerosis.
        Brain. 2006; 129: 1940-1952
        • Giovannoni G.
        • Comi G.
        • Cook S.
        • Rammohan K.
        • Rieckmann P.
        • Soelberg Sørensen P.
        • et al.
        A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis.
        N Engl J Med. 2010; 362: 416-426
        • Gnanapavan S.
        • Grant D.
        • Morant S.
        • Furby J.
        • Hayton T.
        • Teunissen C.E.
        • et al.
        Biomarker report from the phase II lamotrigine trial in secondary progressive MS – neurofilament as a surrogate of disease progression.
        PLoS One. 2013; 8: e70019
        • Gourraud P.A.
        • Harbo H.F.
        • Hauser S.L.
        • Baranzini S.E.
        The genetics of multiple sclerosis: an up-to-date review.
        Immunol Rev. 2012; 248: 87-103
        • Goverman J.
        • Woods A.
        • Larson L.
        • Weiner L.P.
        • Hood L.
        • Zaller D.M.
        Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity.
        Cell. 1993; 72: 551-560
        • Hampton D.W.
        • Anderson J.
        • Pryce G.
        • Irvine K.A.
        • Giovannoni G.
        • Fawcett J.W.
        • et al.
        An experimental model of secondary progressive multiple sclerosis that shows regional variation in gliosis, remyelination, axonal and neuronal loss.
        J Neuroimmunol. 2008; 201–202: 200-211
        • Hampton D.W.
        • Serio A.
        • Pryce G.
        • Al-Izki S.
        • Franklin R.J.
        • Giovannoni G.
        • et al.
        Neurodegeneration progresses despite complete elimination of clinical relapses in a mouse model of multiple sclerosis.
        Acta Neuropathol Commun. 2013; 1: 84
        • He D.
        • Guo R.
        • Zhang F.
        • Zhang C.
        • Dong S.
        • Zhou H.
        Rituximab for relapsing-remitting multiple sclerosis.
        Cochrane Database Syst Rev. 2013; 12: CD009130
        • Hou Z.L.
        • Liu Y.
        • Mao X.H.
        • Wei C.Y.
        • Meng M.Y.
        • Liu Y.H.
        • et al.
        Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis.
        Cell Adh Migr. 2013; 7: 404-407
        • Huizinga R.
        • Hintzen R.Q.
        • Assink K.
        • van Meurs M.
        • Amor S.
        T-cell responses to neurofilament light protein are part of the normal immune repertoire.
        Int Immunol. 2009; 21: 433-441
        • Hohlfeld R.
        • Meinl E.
        • Dornmair K.
        B- and T-cell responses in multiple sclerosis: novel approaches offer new insights.
        J Neurol Sci. 2008; 274: 5-8
        • Howells D.W.
        • Sena E.S.
        • Macleod M.R.
        Bringing rigour to translational medicine.
        Nat Rev Neurol. 2014; 10: 37-43
        • Hultin L.E.
        • Hausner M.A.
        • Hultin P.M.
        • Giorgi J.V.
        CD20 (pan B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes.
        Cytometry. 1993; 14: 196-204
        • Inglese M.
        • Mancardi G.L.
        • Pagani E.
        • Rocca M.A.
        • Murialdo A.
        • Saccardi R.
        • et al.
        Brain tissue loss occurs after suppression of enhancement in patients with multiple sclerosis treated with autologous haematopoietic stem cell transplantation.
        J Neurol Neurosurg Psychiatry. 2004; 75: 643-644
        • Issa N.T.
        • Byers S.W.
        • Dakshanamurthy S.
        Drug repurposing: translational pharmacology, chemistry, computers and the clinic.
        Curr Top Med Chem. 2013; 13: 2328-2336
        • Jacob A.
        • McKeon A.
        • Nakashima I.
        • Sato D.K.
        • Elsone L.
        • Fujihara K.
        • et al.
        Current concept of neuromyelitis optica (NMO) and NMO spectrum disorders.
        J Neurol Neurosurg Psychiatry. 2013; 84: 922-930
        • Jung S.
        • Zielasek J.
        • Köllner G.
        • Donhauser T.
        • Toyka K.
        • Hartung H.P.
        Preventive but not therapeutic application of Rolipram ameliorates experimental autoimmune encephalomyelitis in Lewis rats.
        J Neuroimmunol. 1996; 68: 1-11
        • Kapoor R.
        • Furby J.
        • Hayton T.
        • Smith K.J.
        • Altmann D.R.
        • Brenner R.
        • et al.
        Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial.
        Lancet Neurol. 2010; 9: 681-688
        • Kappos L.
        • Comi G.
        • Panitch H.
        • Oger J.
        • Antel J.
        • Conlon P.
        • et al.
        Induction of a non-encephalitogenic type 2T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group.
        Nat Med. 2000; 6: 1176-1182
        • Kaltsonoudis E.
        • Voulgari P.V.
        • Konitsiotis S.
        • Drosos A.A.
        Demyelination and other neurological adverse events after anti-TNF therapy.
        Autoimmun Rev. 2014; 13: 54-58
        • Kemppinen A.
        • Sawcer S.
        • Compston A.
        Genome-wide association studies in multiple sclerosis: lessons and future prospects.
        Brief Funct Genomics. 2011; 10: 61-70
        • Kennedy K.J.
        • Smith W.S.
        • Miller S.D.
        • Karpus W.J.
        Induction of antigen-specific tolerance for the treatment of ongoing, relapsing autoimmune encephalomyelitis: a comparison between oral and peripheral tolerance.
        J Immunol. 1997; 159: 1036-1044
        • Kilkenny C.
        • Parsons N.
        • Kadyszewski E.
        • Festing M.F.
        • Cuthill I.C.
        • Fry D.
        • et al.
        Survey of the quality of experimental design, statistical analysis and reporting of research using animals.
        PLoS One. 2009; 4: e7824
        • Kilkenny C.
        • Browne W.J.
        • Cuthill I.C.
        • Emerson M.
        • Altman D.G.
        Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research.
        PLoS Biol. 2010; 8: e1000412
        • Landis S.C.
        • Amara S.G.
        • Asadullah K.
        • Austin C.P.
        • Blumenstein R.
        • Bradley E.W.
        • et al.
        A call for transparent reporting to optimize the predictive value of preclinical research.
        Nature. 2012; 490: 187-191
        • Lassmann H.
        • van Horssen J.
        • Mahad D.
        Progressive multiple sclerosis: pathology and pathogenesis.
        Nat Rev Neurol. 2012; 8: 647-656
        • Levine S.
        • Sowinski R.
        Experimental allergic encephalomyelitis in inbred and outbred mice.
        J Immunol. 1973; 110: 139-143
        • Lidster K.
        • Jackson S.J.
        • Ahmed Z.
        • Munro P.
        • Coffey P.
        • Giovannoni G.
        • et al.
        Neuroprotection in a novel mouse model of multiple sclerosis.
        PLoS One. 2013; 8: e79188
        • Lindner M.
        • Ng J.K.
        • Hochmeister S.
        • Meinl E.
        • Linington C.
        Neurofascin 186 specific autoantibodies induce axonal injury and exacerbate disease severity in experimental autoimmune encephalomyelitis.
        Exp Neurol. 2013; 247: 259-266
        • Lindsey J.W.
        • Hodgkinson S.
        • Mehta R.
        • Mitchell D.
        • Enzmann D.
        • Steinman L.
        Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis.
        Ann Neurol. 1994; 36: 183-189
        • Llewellyn-Smith N.
        • Lai M.
        • Miller D.H.
        • Rudge P.
        • Thompson A.J.
        • Cuzner M.L.
        Effects of anti-CD4 antibody treatment on lymphocyte subsets and stimulated tumor necrosis factor alpha production: a study of 29 multiple sclerosis patients entered into a clinical trial of cM-T412.
        Neurology. 1997; 48: 810-816
        • Locatelli G.
        • Wörtge S.
        • Buch T.
        • Ingold B.
        • Frommer F.
        • Sobottka B.
        • et al.
        Primary oligodendrocyte death does not elicit anti-CNS immunity.
        Nat Neurosci. 2012; 15: 543-550
        • Magliozzi R.
        • Serafini B.
        • Rosicarelli B.
        • Chiappetta G.
        • Veroni C.
        • Reynolds R.
        • et al.
        B-cell enrichment and Epstein–Barr virus infection in inflammatory cortical lesions in secondaryprogressive multiple sclerosis.
        J Neuropathol Exp Neurol. 2013; 72: 29-41
        • Marta M.
        • Giovannoni G.
        Disease modifying drugs in multiple sclerosis: mechanisms of action and new drugs in the horizon.
        CNS Neurol Disord Drug Targets. 2012; 11: 610-623
        • Martin R.
        • Bielekova B.
        • Gran B.
        • McFarland H.F.
        Lessons from studies of antigen-specific T cell responses in multiple sclerosis.
        J Neural Transm Suppl. 2000; 60: 361-373
        • Mathiesen H.K.
        • Sorensen P.S.
        Prolonged-release fampridine improves walking in a proportion of patients with multiple sclerosis.
        Expert Rev Neurother. 2013; 13: 1309-1317
        • McGonigle P.
        • Ruggeri B.
        Animal models of human disease: challenges in enabling translation.
        Biochem Pharmacol. 2014; 87: 162-171
        • Mendel I.
        • Kerlero de Rosbo N.
        • Ben-Nun A.
        A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells.
        Eur J Immunol. 1995; 25: 1951-1959
        • Meier U.C.
        • Giovannoni G.
        • Tzartos J.S.
        • Khan G.
        B cells in multiple sclerosis: drivers of disease pathogenesis and Trojan horse for Epstein–Barr virus entry to the central nervous system?.
        Clin Exp Immunol. 2012; 167: 1-6
        • Morris-Downes M.M.
        • Smith P.A.
        • Rundle J.L.
        • Piddlesden S.J.
        • Baker D.
        • Pham-Dinh D.
        • et al.
        Pathological and regulatory effects of anti-myelin antibodies in experimental allergic encephalomyelitis in mice.
        J Neuroimmunol. 2002; 125: 114-124
        • Muhlhausler B.S.
        • Bloomfield F.H.
        • Gillman M.W.
        Whole animal experiments should be more like human randomized controlled trials.
        PLoS Biol. 2013; 11: e1001481
        • Münch G.
        • Robinson S.R.
        Potential neurotoxic inflammatory responses to A beta vaccination in humans.
        J Neural Transm. 2002; 109: 1081-1087
        • Noerager B.D.
        • Inuzuka T.
        • Kira J.
        • Blalock J.E.
        • Whitaker J.N.
        • Galin F.S.
        An IgM anti-MBP Ab in a case of Waldenstrom׳s macroglobulinemia with polyneuropathy expressing an idiotype reactive with an MBP epitope immunodominant in MS and EAE.
        J Neuroimmunol. 2001; 113: 163-169
        • Novotna A.
        • Mares J.
        • Ratcliffe S.
        • Novakova I.
        • Vachova M.
        • Zapletalova O.
        • et al.
        A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximolslow asterisk (Sativex(®)), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis.
        Eur J Neurol. 2011; 18: 1122-1131
        • O’Neill J.K.
        • Baker D.
        • Davison A.N.
        • Maggon K.K.
        • Jaffee B.D.
        • Turk J.L.
        Therapy of chronic relapsing experimental allergic encephalomyelitis and the role of the blood–brain barrier: elucidation by the action of Brequinar sodium.
        J Neuroimmunol. 1992; 38: 53-62
        • O’Neill J.K.
        • Baker D.
        • Turk J.L.
        Inhibition of chronic relapsing experimental allergic encephalomyelitis in the Biozzi AB/H mouse.
        J Neuroimmunol. 1992; 41: 177-187
        • Pedotti R.
        • Mitchell D.
        • Wedemeyer J.
        • Karpuj M.
        • Chabas D.
        • Hattab E.M.
        • et al.
        An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide.
        Nat Immunol. 2001; 2: 216-222
        • Pedotti R.
        • Musio S.
        • Scabeni S.
        • Farina C.
        • Poliani P.L.
        • Colombo E.
        • et al.
        Exacerbation of experimental autoimmune encephalomyelitis by passive transfer of IgG antibodies from a multiple sclerosis patient responsive to immunoadsorption.
        J Neuroimmunol. 2013; 262: 19-26
        • Pryce G.
        • Ahmed Z.
        • Hankey D.J.
        • Jackson S.J.
        • Croxford J.L.
        • Pocock J.M.
        • et al.
        Cannabinoids inhibit neurodegeneration in models of multiple sclerosis.
        Brain. 2003; 126: 2191-2202
        • Pryce G.
        • O’Neill J.K.
        • Croxford J.L.
        • Amor S.
        • Hankey D.J.
        • East E.
        • et al.
        Autoimmune tolerance eliminates relapses but fails to halt progression in a model of multiple sclerosis.
        J Neuroimmunol. 2005; 165: 41-52
        • Raftopoulos R.E.
        • Kapoor R.
        Neuroprotection for acute optic neuritis – can it work?.
        Mult Scler Relat Dis. 2013; 2: 307-311
        • Ransohoff R.M.
        EAE: pitfalls outweigh virtues of screening potential treatments for multiple sclerosis.
        Trends Immunol. 2006; 27: 167-168
        • Ransohoff R.M.
        Animal models of multiple sclerosis: the good, the bad and the bottom line.
        Nat Neurosci. 2012; 15: 1047-1077
        • Reagan-Shaw S.
        • Nihal M.
        • Ahmad N.
        Dose translation from animal to human studies revisited.
        FASEB J. 2008; 22: 659-661
        • Ruggeri B.A.
        • Camp F.
        • Miknyoczki S.
        Animal models of disease: Pre-clinical animal models of cancer and their applications and utility in drug discovery.
        Biochem Pharmacol. 2014; 87: 150-161
        • Rice J.
        Animal models: not close enough.
        Nature. 2012; 484: S9
        • Sisay S.
        • Pryce G.
        • Jackson S.J.
        • Tanner C.
        • Ross R.A.
        • Michael G.J.
        • et al.
        Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis.
        PLoS One. 2013; 8: e76907
        • Smith P.A.
        • Morris-Downes M.
        • Heijmans N.
        • Pryce G.
        • Arter E.
        • O׳Neill J.K.
        • et al.
        Epitope spread is not critical for the relapse and progression of MOG 8-21 induced EAE in Biozzi ABH mice.
        J Neuroimmunol. 2005; 164: 76-84
        • Seok J.
        • Warren H.S.
        • Cuenca A.G.
        • Mindrinos M.N.
        • Baker H.V.
        • Xu W.
        • et al.
        Genomic responses in mouse models poorly mimic human inflammatory diseases.
        Proc Natl Acad Sci USA. 2013; 110: 3507-3512
        • Sriram S.
        • Steiner I.
        Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis.
        Ann Neurol. 2005; 58: 939-945
        • Steinman L.
        • Zamvil S.S.
        Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis.
        Trends Immunol. 2005; 26: 565-571
        • Stuart G.
        • Krikorian K.S.
        A fatal neuro-paralytic accident of anti rabies treatment.
        Lancet. 1930; 1: 1123-1125
        • Sommer N.
        • Löschmann P.A.
        • Northoff G.H.
        • Weller M.
        • Steinbrecher A.
        • Steinbach J.P.
        • et al.
        The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis.
        Nat Med. 1995; 1: 244-248
        • Hart ׳t
        • Bauer J.
        • Brok H.P.
        • Amor S.
        • et al.
        Non-human primate models of experimental autoimmune encephalomyelitis: variations on a theme.
        J Neuroimmunol. 2005; 168: 1-12
        • Tsilidis K.K.
        • Panagiotou O.A.
        • Sena E.S.
        • Aretouli E.
        • Evangelou E.
        • Howells D.W.
        • et al.
        Evaluation ofexcess significance bias in animal studies of neurological diseases.
        PLoS Biol. 2013; 11: e1001609
        • Trapp B.D.
        • Peterson J.
        • Ransohoff R.M.
        • Rudick R.
        • Mörk S.
        • Bö L.
        Axonal transection in the lesions of multiple sclerosis.
        N Engl J Med. 1998; 338: 278-285
        • van der Star B.J.
        • Vogel D.Y.
        • Kipp M.
        • Puentes F.
        • Baker D.
        • Amor S.
        In vitro and in vivo models of multiple sclerosis.
        CNS Neurol Disord Drug Targets. 2012; 11: 570-588
        • van de Veerdonk F.L.
        • Lauwerys B.
        • Marijnissen R.J.
        • Timmermans K.
        • Di Padova F.
        • Koenders M.I.
        • et al.
        The anti-CD20 antibody rituximab reduces the Th17 cell response.
        Arthritis Rheum. 2011; 63: 1507-1516
        • van Noort J.M.
        • van Sechel A.C.
        • Bajramovic J.J.
        • el Ouagmiri M.
        • Polman C.H.
        • Lassmann H.
        • et al.
        The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis.
        Nature. 1995; 375: 798-801
        • van Noort J.M.
        • Verbeek R.
        • Meilof J.F.
        • Polman C.H.
        • Amor S.
        Autoantibodies against alpha B-crystallin, a candidate autoantigen in multiple sclerosis, are part of a normal human immune repertoire.
        Mult Scler. 2006; 12: 287-293
        • van Noort J.M.
        • Baker D.
        • Amor S.
        Mechanisms in the development of multiple sclerosis lesions: reconciling autoimmune and neurodegenerative factors.
        CNS Neurol Disord Drug Targets. 2012; 11: 556-569
        • van Oosten B.W.
        • Lai M.
        • Hodgkinson S.
        • Barkhof F.
        • Miller D.H.
        • Moseley I.F.
        • et al.
        Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial.
        Neurology. 1997; 49: 351-357
        • Verghese M.W.
        • McConnell R.T.
        • Strickland A.B.
        • Gooding R.C.
        • Stimpson S.A.
        • Yarnall D.P.
        • et al.
        Differential regulation of human monocyte-derived TNF alpha and IL-1 beta by type IV cAMP-phosphodiesterase (cAMP-PDE) inhibitors.
        J Pharmacol Exp Ther. 1995; 272: 1313-1320
        • Vesterinen H.M.
        • Sena E.S.
        • ffrench-Constant C.
        • Williams A.
        • Chandran S.
        • Macleod M.R.
        Improving the translational hit of experimental treatments in multiple sclerosis.
        Mult Scler. 2010; 16: 1044-1055
        • Vaughan K.
        • Peters B.
        • O׳Connor K.C.
        • Martin R.
        • Sette A.
        A molecular view of multiple sclerosis and experimental autoimmune encephalitis: What can we learn from the epitope data?.
        J Neuroimmunol. 2013; (Epub ahead of print)
        • Vidal-Jordana A.
        • Sastre-Garriga J.
        • Pérez-Miralles F.
        • Tur C.
        • Tintoré M.
        • Horga A.
        • et al.
        Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes.
        Mult Scler. 2013; 19: 1175-1181
        • Visser E.M.
        • Wilde K.
        • Wilson J.F.
        • Yong K.K.
        • Counsell C.E.
        A new prevalence study of multiple sclerosis in Orkney, Shetland and Aberdeen city.
        J Neurol Neurosurg Psychiatry. 2012; 83: 719-724
        • Weber M.S.
        • Prod׳homme T.
        • Patarroyo J.C.
        • Molnarfi N.
        • Karnezis T.
        • Lehmann-Horn K.
        • et al.
        B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity.
        Ann Neurol. 2010; 68: 369-383
        • Wiendl H.
        • Hohlfeld R.
        Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials.
        BioDrugs. 2002; 16: 183-200
        • Wiendl H.
        • Hohlfeld R.
        Multiple sclerosis therapeutics: unexpected outcomes clouding undisputed successes.
        Neurology. 2009; 72: 1008-1015
        • Weiner H.L.
        • Mackin G.A.
        • Matsui M.
        • Orav E.J.
        • Khoury S.J.
        • Dawson D.M.
        • et al.
        Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis.
        Science. 1993; 259: 1321-1324
        • Wolinsky J.S.
        • Narayana P.A.
        • O׳Connor P.
        • Coyle P.K.
        • Ford C.
        • Johnson K.
        • et al.
        Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial.
        Ann Neurol. 2007; 61: 14-24
        • Xiong Y.
        • Mahmood A.
        • Chopp M.
        Animal models of traumatic brain injury.
        Nat Rev Neurosci. 2013; 14: 128-142
        • Zajicek J.
        • Fox P.
        • Sanders H.
        • Wright D.
        • Vickery J.
        • Nunn A.
        • et al.
        Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial.
        Lancet. 2003; 362: 1517-1526
        • Zajicek J.P.
        • Hobart J.C.
        • Slade A.
        • Barnes D.
        • Mattison P.G.
        Multiple sclerosis and extract of cannabis: results of the MUSEC trial. MUSEC Research Group.
        J Neurol Neurosurg Psychiatry. 2012; 83: 1125-1132
        • Zajicek J.
        • Ball S.
        • Wright D.
        • Vickery J.
        • Nunn A.
        • Miller D.
        • et al.
        Effect of dronabinol on progression in progressive multiple sclerosis (CUPID): a randomised, placebo-controlled trial.
        Lancet Neurol. 2013; 12: 857-865