Advertisement
Review| Volume 3, ISSUE 1, P22-27, January 2014

Download started.

Ok

A review of the anterior visual pathway model and the study of vitamin D in demyelinating disease

  • Jodie M. Burton
    Correspondence
    Correspondence to: Health Sciences Centre, room 1007c, 3330 Hospital Drive NW, Canada T2N 4N1. Tel.: +1 403 210 6614.
    Affiliations
    Department of Clinical Neurosciences Room 1195 - Foothills Hospital 1403 - 29 Street N.W. Calgary Alberta T2N 2T9

    Department of Community Health SciencesFaculty of Medicine University of CalgaryTRW Building 3rd Floor 3280 Hospital Drive NW Calgary, Alberta CANADA T2N 4Z6

    Hotchkiss Brain InstituteHealth Research Innovation CentreRoom 1A103330 Hospital Drive NWCalgary, Alberta, CanadaT2N 4N1

    Calgary Optic Neuritis Research Group (CORE), Canada

    University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4
    Search for articles by this author
  • Fiona Costello
    Affiliations
    Department of Clinical Neurosciences Room 1195 - Foothills Hospital 1403 - 29 Street N.W. Calgary Alberta T2N 2T9

    Hotchkiss Brain InstituteHealth Research Innovation CentreRoom 1A103330 Hospital Drive NWCalgary, Alberta, CanadaT2N 4N1

    Calgary Optic Neuritis Research Group (CORE), Canada

    Department of Surgery, University of Calgary Foothills Medical Centre North Tower 10th Floor 1403 - 29th Street NWCalgary, AB T2N 2T9

    University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4
    Search for articles by this author

      Highlights

      • Vitamin D status is a risk factor for multiple sclerosis development and inflammatory activity.
      • Presently, there is no evidence that vitamin D is neuroprotective and can limit disability.
      • The anterior visual pathway is a feasible model to study the neuroprotective impact of vitamin D.

      Abstract

      In recent years, theories about the anti-inflammatory properties of vitamin D in demyelinating disease have been well substantiated by human studies examining relapse reduction, MRI lesion activity and risk of MS conversion. However, the evidence that vitamin D may protect against neurodegeneration has not been established as of yet, and comes with the challenges of a manageable target over a manageable time period. Such challenges might be overcome by the anterior visual pathway (AVP) model of the central nervous system, which allows the non-invasive study (e.g. imaging, electrophysiology and clinical) of form and function within a much shorter time frame than pure clinical activity. This review outlines the state of current knowledge about vitamin D in demyelinating disease, and highlights the potential utility of using the AVP to study its neuroprotective effects.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Acheson E.D.
        • Bachrach C.A.
        • Wright F.M.
        Some comments on the relationship of the distribution of multiple sclerosis to latitude, solar radiation and other variables.
        Acta Psychiatrica et Neurologica. 1960; 147: 132-147
        • Agosta F.
        • Rovaris M.
        • Pagani E.
        Magnetization transfer ratio MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis.
        Brain. 2006; 126: 2620-2627
        • Audoin B.
        • Zaaraoui W.
        • Reuter F.
        • et al.
        Atrophy mainly affects the limbic system and the deep gray matter at the first stage of multiple sclerosis.
        Journal of Neurology, Neurosurgery, and Psychiatry. 2010; 81: 690-695
        • Beck R.W.
        • Cleary P.A.
        • Anderson M.M.
        • et al.
        A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis.
        New England Journal of Medicine. 1992; 326: 581-588
        • Burton J.M.
        • Kimball S.M.
        • Vieth R.
        • et al.
        A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis.
        Neurology. 2010; 74: 1852-1859
      1. Burton JM, Trufyn J, Tung C, Costello F. The role of vitamin D in optic neuritis—an update. Presented at the American Academy of Neurology 65th Annual Meeting. San Diego, CA; 2013.

        • Ciccarelli O.
        • Werring D.J.
        • Wheeler-Kingshott C.A.
        • et al.
        Invesigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations.
        Neurology. 2001; 56: 926-933
        • Costello F.
        • Coupland S.
        • Hodge W.
        • et al.
        Quantifying axonal loss after optic neuritis with optical coherence tomography.
        Annals of Neurology. 2006; 59: 963-969
        • Costello F.
        • Hodge W.
        • Pan Y.I.
        • Eggenberger E.
        • Coupland S.
        • Kardon R.H.
        Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography.
        Multiple Sclerosis. 2008; 14: 893-905
        • Costello F
        • Klistorner A
        • Kardon R.
        Optical coherence tomography in the diagnosis and management of optic neuritis and multiple sclerosis.
        Ophthalmic Surgery, Lasers & Imaging. 2011; 48: S28-S40
        • Fahle M.
        • Bach M.
        Origin of the visual evoked potentials.
        in: Heckenlively J.R. Arden G.B. Principles and practice of clinical electrophysiology of vision. The MIT Press, Cambridge2006: 207-234
        • Filippi M.
        • Bozzali M.
        • Comi G.
        • et al.
        Magnetization transfer and diffusion tensor MR imaging of basal ganglia from patients with multiple sclerosis.
        Journal of the Neurological Sciences. 2001; 183: 69-72
        • Fisher J.B.
        • Jacobs D.A.
        • Markowitz C.E.
        • et al.
        Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis.
        Ophthalmology. 2006; 113: 324-332
        • Frischer J.M.
        • Bramrow S.
        • Dal-Bianco A.
        • et al.
        The relation between inflammation and neurodegeneration in multiple sclerosis brains.
        Brain. 2009; 132: 1175-1189
        • Frohman E.M.
        • Fujimoto J.G.
        • Frohman T.C.
        • Calabresi P.A.
        • Cutter G.
        • Balcer L.J.
        Optical coherence tomography: a window into the mechanisms of multiple sclerosis.
        Nature Clinical Practice Neurology. 2008; 4: 664-675
        • Galetta K.M.
        • Calabresi P.A.
        • frohman E.M.
        • Balcer L.J.
        Optical coherence tomography (OCT): imaging the visual pathway as a model for neurodegeneration.
        Neurotherapeutics. 2011; 8: 117-132
        • Green A.J.
        • McQuaid S.
        • Hauser S.L.
        • Allen I.V.
        • Lyness R.
        Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration.
        Brain. 2010; 133: 1591-1601
        • Griffin C.M.
        • Chard D.T.
        • Ciccarelli O.
        • et al.
        Diffusion tensor imaging in early relapsing-remitting multiple sclerosis.
        Multiple Sclerosis. 2001; 7: 290-297
        • Goldberg P.
        • Fleming M.C.
        • Picard E.H.
        Multiple sclerosis: Decreased relapse rate through dietary supplementation with calcium, magnesium and vitamin D.
        Medical Hypotheses. 1986; 21: 193-200
        • Hanley D.A.
        • Davison S.
        Vitamin D insufficiency in North America.
        Journal of Nutrition. 2005; 135: 332-337
      2. Health Canada. 〈http://www.hc-sc.gc.ca/fn-an/nutrition/vitamin/vita-d-eng.php〉.

        • Henderson A.P.
        • Altmann D.R.
        • Trip A.S.
        • et al.
        A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials.
        Brain. 2010; 133: 2592-2602
        • Henry R.G.
        • Shieh M.
        • Okouda D.T.
        • et al.
        Regional gray matter atrophy in clinically isolated syndromes at presentation.
        Journal of Neurology, Neurosurgery, and Psychiatry. 2008; 79: 1236-1244
        • Hickman S.J.
        • Dalton C.M.
        • Miller D.H.
        • Plant G.T.
        Management of acute optic neuritis.
        Lancet. 2002; 360: 1953-1962
        • Islam T.
        • Gauderman W.J.
        • Cozen W.
        • et al.
        Childhood sun exposure influences risk of multiple sclerosis in monozygotic twins.
        Neurology. 2007; 69: 381-388
        • Khaleeli Z.
        • Cercignani M.
        • Audoin B.
        • et al.
        Localized gray matter damage in early primary progressive multiple sclerosis contributes to disability.
        Neuroimage. 2007; 37: 253-261
        • Klistorner A.
        • Arvind H.
        • Nguyen T.
        • et al.
        Axonal loss and myelin in early ON loss in postacute optic neuritis.
        Annals of Neurology. 2008; 64: 325-331
        • Klistorner A.
        • et al.
        Correlation between full-field and multifocal VEPs in optic neuritis.
        Documenta Ophthalmologica. 2008; 116: 19-27
        • Klistorner A.
        • Arvind H.
        • Nguyen T.
        • et al.
        Multifocal VEP and OCT in optic neuritis: a topographical study of the structure-function relationship.
        Documenta Ophthalmologica. 2009; 118: 129-137
        • Klistorner A.
        • Arvind H.
        • Garrick R.
        • Graham S.L.
        • Paine M.
        • Yiannikas C.
        Interrelationship of optical coherence tomography and multifocal visual evoked potentials after optic neuritis.
        Investigative Ophthalmology and Visual Science. 2010; 51: 2770-2777
        • Lassman H.
        Axonal injury in multiple sclerosis (editorial).
        Journal of Neurology, Neurosurgery, and Psychiatry. 2003; 74: 695-697
        • Miller D.
        • Miller D.
        • Barkhof F.
        • Montalban X.
        • et al.
        Clinically isolated syndromes suggestive of multiple sclerosis, part 2: non-conventional MRI, recovery processes, and management..
        Lancet Neurology. 2005; 4: 341-348
        • Mowry E.M.
        • Krupp L.B.
        • Milazzo M.
        • et al.
        Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis.
        Annals of Neurology. 2010; 67: 618-624
        • Mowry E.M.
        • Waubant E.
        • McCullock C.E.
        • et al.
        Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis.
        Annals of Neurology. 2012; 72: 234-240
        • Munger K.L.
        • Levin L.I.
        • Hollis B.W.
        • et al.
        Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis.
        Journal of the American Medical Association. 2006; 296: 2832-2838
        • Poonwalla A.H.
        • Hasan K.M.
        • Gupta R.K.
        • et al.
        Diffusion-tensor MR imaging at cortical lesions in multiple sclerosis: initial findings.
        Radiology. 2008; 246: 880-886
        • Pulicken M.
        • Gordon-Lipkin E.
        • Balcer L.J.
        • Frohman E.
        • Cutter G.
        • Calabresi P.A.
        Optical coherence tomography and disease subtype in multiple sclerosis.
        Neurology. 2007; 69: 2085-2092
        • Rovaris M.
        • Judica E.
        • Gallo A.
        • et al.
        Gray matter damage predicts the evolution of primary progressive multiple sclerosis at 5 years.
        Brain. 2006; 129: 2628-2634
        • Saidha S.
        • Syc S.B.
        • Ibrahim M.A.
        • et al.
        Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography.
        Brain. 2011; 134: 518-533
      3. Schwalfenberg GK, Genuis SJ, Hiltz MN. Addressing vitamin D deficiency in Canada: a public health innovation whose time has come. Public Health 2010;124(6):350-359

      4. Simpson S Jr, Taylor B, Blizzard L, Ponsonby AL, Pittas F, Tremlett H, et al., Higher 25-hydroxyvitamin D is associated with lower relapse risk in MS. Ann Neurol 2010;68(2):193-203.

        • Smolders J.
        • Menheere P.
        • Kessels A.
        • et al.
        Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis.
        Multiple Sclerosis. 2008; 14: 1220-1224
        • Soilu-Hanninen M.
        • Airas L.
        • Mononen
        • et al.
        25-Hydroxyvitamin D levels in serum at the onset of multiple sclerosis.
        Multiple Sclerosis. 2005; 11: 266-271
        • Soilu-Hanninen M.
        • Laaksonen M.
        • Laitinen I.
        • et al.
        A longitudinal study of serum 25-hydroxyvitamin D and intact parathyroid hormone levels indicate the importance of vitamin D and calcium homeostasis regulation in multiple sclerosis.
        Journal of Neurology, Neurosurgery, and Psychiatry. 2008; 79: 152-157
        • Soilu-Hanninen M.
        • Aivo J.
        • Lindstrom B.M.
        • Elovaara I.
        • Sumelahti M.L.
        • Farkkila M.
        • et al.
        A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon beta-1b in patients with multiple sclerosis.
        Journal of Neurology, Neurosurgery, and Psychiatry. 2012; 83: 565-571
      5. Supplementation of VigantOL® oil versus placebo as add-on in patients with relapsing remitting multiple sclerosis receiving Rebif® treatment (SOLAR). ClinicalTrials.gov Identifier: NCT01285401.

        • Syc S.B.
        • Saidha S.
        • Newsome S.D.
        • et al.
        Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis.
        Brain. 2012; 135: 521-533
        • Tao G.
        • Datta S.
        • He R.
        • et al.
        Deep gray matter atrophy in multiple sclerosis: a tensor based morphometry.
        Journal of the Neurological Sciences. 2009; 282: 36-46
        • Trip S.A.
        • Schlottmann P.G.
        • Jones S.J.
        • et al.
        Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis.
        Annals of Neurology. 2005; 58: 383-391
        • Tovar-Moll F.
        • Evangelou I.E.
        • Chiu A.W.
        • et al.
        Thalamic involvement and its impact on clinical disability in patients with multiple sclerosis: a diffusion tensor imaging study at 3 T.
        AJNR American Journal of Neuroradiology. 2009; 30: 1380-1386
        • Ulett G.
        Geographic distribution of multiple sclerosis.
        Diseases of the Nervous System. 1948; 9: 342
        • Villoslada P.
        • Cuneo A.
        • Gelfand J.
        • Hauser S.L.
        • Green A.
        Color vision is strongly associated with retinal thinning in multiple sclerosis.
        Multiple Sclerosis. 2012; 18: 991-999
        • Woolmore J.A.
        • Stone M.
        • Pye E.M.
        • et al.
        Studies of associations between disability in multiple sclerosis, skin type, gender and ultraviolet radiation.
        Multiple Sclerosis. 2007; 13: 369-375
        • van der Mei I.A.
        • Ponsonby A.L.
        • Blizzard L.
        • et al.
        Regional variation in multiple sclerosis prevalence in Australia and its association with ambient ultraviolet radiation.
        Neuroepidemiology. 2001; 20: 168-174
        • van der Mei I.A.
        • Ponsonby A.L.
        • Blizzard L.
        • et al.
        Past exposure to sun, skin phenotype, and risk of multiple sclerosis: case-control study.
        British Medical Journal. 2003; 327: 316
      6. Vitamin D in multiple sclerosis. ClinicalTrials.gov identifier: NCT identifier 01490502.