Advertisement

Magnetic resonance imaging correlates of clinical outcomes in early multiple sclerosis

      Highlights

      • There was a longitudinal association between changes in brain volume (SIENA) and SDMT but not with PASAT.
      • One percent decrease in brain volume was associated with 1.5 letters decrease on low contrast visual acuity
      • Baseline nBPV, nGMV and nNAWMV predicted subsequent changes in disability as measured by MSFC but not EDSS.

      Abstract

      Objectives

      To study the association between changes in brain magnetic resonance imaging (MRI) and clinical outcomes in early MS.

      Methods

      MS patients within 12 months of onset were enrolled and followed up to 3 years. Clinical measures included Symbol Digit Modalities Test (SDMT), MS Functional Composite (MSFC) and low contrast letter acuity (LCLA). MRI outcomes included brain volume changes measured by SIENA and SIENAX normalized measurements [brain parenchymal volume (BPV), normal-appearing white and gray matter volume (NAWMV and GMV) and T2 lesion volume (T2LV)]. Mixed model regression measured time trends and associations between imaging and clinical outcome.

      Results

      Forty-three patients were enrolled within 7.5±4.9 months of onset. Baseline T2 lesion volume predicted subsequent changes in Paced Auditory Serial Addition Test (PASAT) (p=0.004), whereas baseline measures of atrophy including BPV, GMV, and NAWMV predicted longitudinal changes in MSFC (p=0.016, p=0.040, p=0.021, respectively) and Timed-25 Foot Walk (p<0.05). Each 1% decrease in SIENA was associated with 1.14 point decrease in SDMT score (p=0.03). Each 1% decrease in brain volume SIENA was associated with almost 1.5 letters decrease on LCLA (p=0.02).

      Conclusion

      Measures of lesion volume and overall brain volume were associated with different long-term clinical outcome measures in early MS.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Multiple Sclerosis and Related Disorders
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anderson V.M.
        • Bartlett J.W.
        • Fox N.C.
        • Fisniku L.
        • Miller D.H.
        Detecting treatment effects on brain atrophy in relapsing remitting multiple sclerosis: sample size estimates.
        J Neurol. 2007; 254: 1588-1594
        • Balcer L.J.
        • Baier M.L.
        • Cohen J.A.
        • Kooijmans M.F.
        • Sandrock A.W.
        • Nano-Schiavi M.L.
        • et al.
        Contrast letter acuity as a visual component for the multiple sclerosis functional composite.
        Neurology. 2003; 61: 1367-1373
        • Balcer L.J.
        • Baier M.L.
        • Pelak V.S.
        • Fox R.J.
        • Shuwairi S.
        • Galetta S.L.
        • et al.
        New low-contrast vision charts: reliability and test characteristics in patients with multiple sclerosis.
        Mult Scler. 2000; 6: 163-171
        • Balcer L.J.
        • Frohman E.M.
        Evaluating loss of visual function in multiple sclerosis as measured by low-contrast letter acuity.
        Neurology. 2010; 74: S16-S23
        • Barkhof F.
        • Calabresi P.A.
        • Miller D.H.
        • Reingold S.C.
        Imaging outcomes for neuroprotection and repair in multiple sclerosis trials.
        Nat Rev Neurol. 2009; 5: 256-266
        • Benedict R.H.
        • Cookfair D.
        • Gavett R.
        • Gunther M.
        • Munschauer F.
        • Garg N.
        • et al.
        Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS).
        J Int Neuropsychol Soc. 2006; 12: 549-558
        • Benedict R.H.
        • Fischer J.S.
        • Archibald C.J.
        • Arnett P.A.
        • Beatty W.W.
        • Bobholz J.
        • et al.
        Minimal neuropsychological assessment of MS patients: a consensus approach.
        Clin Neuropsychol. 2002; 16: 381-397
        • Bergsland N.
        • Horakova D.
        • Dwyer M.G.
        • Dolezal O.
        • Seidl Z.K.
        • Vaneckova M.
        • et al.
        Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis.
        Am J Neuroradiol. 2012; 33: 1573-1578
        • Brochet B.
        • Deloire M.S.
        • Bonnet M.
        • Salort-Campana E.
        • Ouallet J.C.
        • Petry K.G.
        • et al.
        Should SDMT substitute for PASAT in MSFC? A 5-year longitudinal study.
        Mult Scler. 2008; 14: 1242-1249
        • Cover K.S.
        • van Schijndel R.A.
        • van Dijk B.W.
        • Redolfi A.
        • Knol D.L.
        • Frisoni G.B.
        • et al.
        Assessing the reproducibility of the SienaX and Siena brain atrophy measures using the ADNI back-to-back MP-RAGE MRI scans.
        Psychiatry Res. 2011; 193: 182-190
        • Cutter G.R.
        • Baier M.L.
        • Rudick R.A.
        • Cookfair D.L.
        • Fischer J.S.
        • Petkau J.
        • et al.
        Development of a multiple sclerosis functional composite as a clinical trial outcome measure.
        Brain: J Neurol. 1999; 122: 871-882
        • Drake A.S.
        • Weinstock-Guttman B.
        • Morrow S.A.
        • Hojnacki D.
        • Munschauer F.E.
        • Benedict R.H.
        Psychometrics and normative data for the multiple sclerosis functional composite: replacing the PASAT with the symbol digit modalities test.
        Mult Scler. 2010; 16: 228-237
        • Fischer J.S.
        Cognitive impairment in multiple sclerosis.
        in: Cook S.D. Handbook of multiple sclerosis. Marcel Dekker, New York2001: 233-255
        • Fisher E.
        • Lee J.C.
        • Nakamura K.
        • Rudick R.A.
        Gray matter atrophy in multiple sclerosis: a longitudinal study.
        Ann Neurol. 2008; 64: 255-265
        • Glanz B.I.
        • Healy B.C.
        • Hviid L.E.
        • Chitnis T.
        • Weiner H.L.
        Cognitive deterioration in patients with early multiple sclerosis: a 5-year study.
        J Neurol Neurosurg Psychiatry. 2012; 83: 38-43
        • Goldman M.D.
        • Motl R.W.
        • Rudick R.A.
        Possible clinical outcome measures for clinical trials in patients with multiple sclerosis.
        Ther Adv Neurol Disord. 2010; 3: 229-239
        • Gronwall D.M.
        Paced auditory serial-addition task: a measure of recovery from concussion.
        Percept Mot Skills. 1977; 44: 367-373
        • Huijbregts S.C.
        • Kalkers N.F.
        • de Sonneville L.M.
        • de Groot V.
        • Reuling I.E.
        • Polman C.H.
        Differences in cognitive impairment of relapsing remitting, secondary, and primary progressive MS.
        Neurology. 2004; 63: 335-339
        • Kurtzke J.F.
        Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).
        Neurology. 1983; 33: 1444-1452
        • Lavorgna L.
        • Bonavita S.
        • Ippolito D.
        • Lanzillo R.
        • Salemi G.
        • Patti F.
        • et al.
        Clinical and magnetic resonance imaging predictors of disease progression in multiple sclerosis: a nine-year follow-up study.
        Mult Scler. 2013;
        • Maghzi A.H.
        • Minagar A.
        • Waubant E.
        Neuroprotection in multiple sclerosis: a therapeutic approach.
        CNS Drugs. 2013; 27: 799-815
        • McDonald W.I.
        • Compston A.
        • et al.
        Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis.
        Ann Neurol. 2001; 50: 121-127
        • Morrow S.A.
        • Drake A.
        • Zivadinov R.
        • Munschauer F.
        • Weinstock-Guttman B.
        • Benedict R.H.
        Predicting loss of employment over three years in multiple sclerosis: clinically meaningful cognitive decline.
        Clin Neuropsychol. 2010; 24: 1131-1145
        • Mowry E.M.
        • Beheshtian A.
        • Waubant E.
        • Goodin D.S.
        • Cree B.A.
        • Qualley P.
        • et al.
        Quality of life in multiple sclerosis is associated with lesion burden and brain volume measures.
        Neurology. 2009; 72: 1760-1765
        • Pineles S.L.
        • Birch E.E.
        • Talman L.S.
        • Sackel D.J.
        • Frohman E.M.
        • Calabresi P.A.
        • et al.
        One eye or two: a comparison of binocular and monocular low-contrast acuity testing in multiple sclerosis.
        Am J Ophthalmol. 2011; 152: 133-140
        • Polman C.
        • Reingold S.
        • et al.
        Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”.
        Ann Neurol. 2005; 58: 840-846
        • Rao S.M.
        • Leo G.J.
        • Bernardin L.
        • Unverzagt F.
        Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction.
        Neurology. 1991; 41: 685-691
        • Rudick R.A.
        • Lee J.C.
        • Nakamura K.
        • Fisher E.
        Gray matter atrophy correlates with MS disability progression measured with MSFC but not EDSS.
        J Neurol Sci. 2009; 282: 106-111
        • Schwid S.R.
        • Goodman A.D.
        • Mattson D.H.
        • Mihai C.
        • Donohoe K.M.
        • Petrie M.D.
        • et al.
        The measurement of ambulatory impairment in multiple sclerosis.
        Neurology. 1997; 49: 1419-1424
        • Simon J.H.
        Brain atrophy in multiple sclerosis: what we know and would like to know.
        Mult Scler. 2006; 12: 679-687
        • Smith S.M.
        • Zhang Y.
        • Jenkinson M.
        • Chen J.
        • Matthews P.M.
        • Federico A.
        • et al.
        Accurate, robust, and automated longitudinal and cross-sectional brain change analysis.
        NeuroImage. 2002; 17: 479-489
        • Tombaugh T.N.
        A comprehensive review of the Paced Auditory Serial Addition Test (PASAT).
        Arch Clin Neuropsychol: Off J Natl Acad Neuropsychol. 2006; 21: 53-76
        • Waubant E.
        • Maghzi A.H.
        • Revirajan N.
        • Spain R.
        • Julian L.
        • Mowry E.
        • et al.
        A phase II trial of neuroprotection with riluzole in early relapsing-remitting MS.
        Mult Scler. 2013; 19: 560
        • Wu G.F.
        • Schwartz E.D.
        • Lei T.
        • Souza A.
        • Mishra S.
        • Jacobs D.A.
        • et al.
        Relation of vision to global and regional brain MRI in multiple sclerosis.
        Neurology. 2007; 69: 2128-2135
        • Zhang Y.
        • Brady M.
        • Smith S.
        Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.
        IEEE Trans Med Imaging. 2001; 20: 45-57